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SONIC BOOM IN TURBULENCE 

By W. A. Horning 

SECTION 1 

INTRODUCTION 

The  sonic  boom is affected  by  both  large and small  scale  non- 
uniformities  in  the  atmosphere. By large  scale  nonuniformities we 
mean  those  which  describe  the  presence of a tropopause  or  cold  front, 
those  whose  scale  length is 1 rge  compared  to  the  thickness of the N- 
wave (- 300 f t ) .  E. J .  Kane B and others  have  studied  large  scale  non- 
uniformities by  the  method of ray  acoustics?  Small  scale  nonuniformi- 
ties  are  produced  chiefly by typical  atmospheric  turbulence,  which 
affects  the  passage of sound  by  both the  tem  erature and air  velocity 
fluctuations  which it contains. S. C. Crow  has  analyzed  the  effect of 
turbulence  on  sonic  bang by  a first   order  scattering  theory,  and with 
much  agreement  with  experiment.  He  suggests  that  higher  order  scat- 
terings,  the  focus of the  present  study,  may  be  required  to  fully  account 
for  the  large  pressure  spikes which  occur  in  the  sonic  boom  at  ground. 

i@ 

V. I. Tatarski's  volume3  (1961)  has  been a basis  for  most 
subsequent  theories on the  small  angle  scattering of waves  in  random 
media. He shows  that  wave  interference is central  in  this  phenomenon, 
in  results  which  agree  widely  with  experiment. M. E.  Gracheva and 
A. C. Gurvich4  (1965)  for  the  case of a light  beam  in  turbulence,  meas- 
ured a  wave  pathlength L, beyond which  the  mean  square  fluctuations 
within  the  beam no longer  increase  appreciably.  This  saturation  length 
L, i s   f rom 1 to 2 km  in  the  optical  case. It now ap  ears   as   the  path-  
length  beyond  which  the ear l ier   resul ts  of Tatarskit;  fail,  in  common 
with  other  first  order  scattering  theories. M ltiple  scatterin  studies 
of saturation by Tatarski5; R. A.  Schmeltzerg, W.  P. Brown., and 
D. A. de Wolf have  started  with  the  computation of expressions  for 
statistical  sample  histories of the  scattered  wave  field  itself.  These 
expressions,  largely  based on  the  perturbation  theory of quantum  me- 
chanics  are  series  which  converge  slowly  at  the  saturation  length. D.A. 
de Wolf has  nevertheless  obtained  some good numerical  results  by 
their  means. 

The  present  stud  computes no sample  histories.  Rather,  in 
the  spirit of M. T. Beran"  and V. M. ,KornissarovlI,  it t reats   s ta t is-  
tical  averages  through  their own propagation  equations, as is done  in 
the  theory of Brownian  motion,  optical  coherence,  and  thermal  noise  in 
electric  circuits. We hoped that  some  field  averages  might  propagate 
more  simply  than  sample  fields,  and  such  is  the  case i n  the  present  prob- 
lem.  The  key  step  in  our  approach is the  termination  or  closure of 
the  infinite  hierarchy of equations  which  connect  cross  covariances 
between  random  fluctuations of sound  and  fluctuations of the  medium. 
This  step  uses  factoring of fourth  degree  covariances and involves  an 
e r r o r  of third  degree  in 8 , the  root  mean  square of the  fluctuations  in 
the  medium.  Such  factoring  leads  to a simple  expression  for  the  satu- 
ration  length,  which  is found to  vary  as  the  inverse of sonic  frequency. 

*Superscripts  refer to the  list of references  presented on pages 78-80. 
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The  full  statistics of the  sonic  boom at ground are   intr icate .  
By largely  limiting  attention  to  the  probability  distribution  for  the  peaks 
of the  larger  and more  unlikely  overpressure  spikes,  the  problem is 
made  somewhat  tractable  through  the  use of Poisson  statistics.  The 
sonic  boom, as a spatially  distributed  overpressure  traveling  at a speed 
of sound, is  composed of a wide  band of frequencies,  because of its 
sharp  leading  and  trailing  edges.  The  higher of these  frequencies  are 
saturated at ground and possess  random  phases.  They  comprise 
Gaussian  noise  which is statistically  almost  uniform  near  each  edge of 
the  N-wave and within a distance  from it equal  to  the  inverse of the 
lowest  spatial  frequency b which is saturated.  At  frequencies  greater 
than  b, we  will  find  the  spectral  density of this  noise  to  vary as the 
inverse  square of the  frequency.  That  waves  propagating  through  tur- 
bulence  eventually  become  random  noise  has  been  stated  by  de Wolf9. 
That  this  noise is somewhat  localized  near  the  sharp ed e s  of the N- 
wave is shown by  data, and has  been  explained  by  Crow f . 

The  final  step of our  analysis is a use of an  important  formula 
of S. 0. Rice  for  the  probability  per  unit  time of unusually  high  maxima 
in a random  fluctuation  with known spectral  density. An important  in- 
put to  the  calculation is Kolmogorov's  spectral  density  for  turbulent 
flow velocities  within  the  inertial  subrange of eddy  diameters.  It is 
remarkable  that  anything  about  atmospheric  flow is as   invariable   as  
this  seems  to  be.  Nevertheless,  it is somewhat  uncertain,  especially 
near  ground,  in  part  because it omits  intermittency  in  turbulence. 
Micrometeorological  conditions  near  ground,  at  the  time  most of the 
data'?vere  taken, could  be  only  estimated.  The  above  uncertainties, 
added to  theoretical  approximations,  limit  the  significance of agree- 
ment  between  theory and experiment. Such agreement, with reason- 
able  inputs,  is  nevertheless  within a factor of 2. This  suggests  air 
turbulence  as  the  chief  origin of high  frequency  randomness i n  sonic 
boom.  This  result i s  of interest  in  the  scattering of microwaves  and 
light by turbulence,  phenomena  much  Lke  the  scattering of sound. 

The present  study  is a theoretical  interpretation of some 
the  data o n  sonic  boom  given by I. E. Garrick  and D. J. Maglieri . 
The  computed  results,  as  reviewed in  the  summary,  are in general 
agreement with  the  data. 

1"Lf 
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SECTION 2 

SECTION GUIDE 

Since the analysis i s  lengthy, the following  outline i s  given, so 
that the  reader   may at any  time  orient  himself  relative  to  the  analysis. 

Section  3,  following  previous  authors,  derives  the  wave equa- 
tion  for  sound  in  turbulence  taking  account of both  turbulent  flow  velo- 
city  and  the  associated  temperature  fluctuations.  Section 4 is  a reformu- 
lation of Section 3 in  terms of a special set of Fourier  coefficients  for 
the  sonic  pulse.  Sections 3 and 4 are essential  to  the  results  on  boom 
fluctuations.  Section 5 is a partial  introduction  to  random  process  theory. 
Sections 5 and 6 concern basics and  approach.  The  results  on  statisti- 
cal symmetry  in  Section 5 are  used  continually  in  what  follows.  Section 
5, and  what  follows  it,  presumes as  much  familiarity  with  random  pro- 
cess  theory as  is  outlined  in  Appendices A 6  and A7. 

Sections 6 ,  7 and 8 contain a treatment of the  multiple  wave 
scattering of plane  waves  incident  on  weak  turbulence  for  wave  path- 
lengths  which  may  be  large  compared  to  the  saturation  length.  The 
whole  analysis  applies  only  when  the  pathlength is well  in  excess of all 
important  eddy  diameters.  The  pathlength i s  treated a s  large  com- 
pared  to all important  wavelengths  in  the  Fourier  analysis of the  inci- 
dent  wave  packet. If the  incident  plane  waves  form a disturbance 
unlimited  in  their  mean  direction of propagation,  the  pathlength  in 
quasi-uniform  turbulence  must  be  large  compared  to  the  longitudinal 
correlation  length of the  incident  bea  in  order  that  the  above  sec- 
tions  apply.  Following A .  KhinchineB, Sections 6 ,  7 and 8 aim a t  
wave  statistics  valid  asymtotically  at a pathlength  large  compared  to 
all characteristic  lengths  in  the  phenomenon,  where  the  scattering 01 
any  partial  wave i s  by a small percentage  over  any  characteristic  length. 

Sections 9,  10 and 11, based  heavily  on  Section 8, are  chiefly 
specific  to  overpressure  peaks of unusually  large maxima within  the 
sonic  boom.  Section 12 contains  graphical  results,  while  the  final 
Section  13 is  a brief  critique  and  summary. 

Appendix  A1 emphasizes  that  some  mathematical  models of 
nature are  non-Markovian,  despite  the fact that all natural   processes 
are Markovian  when  viewed  from  the  principle of micro-causality. 
Appendices  A2,  A3, A 4  and A 5  consist of solutions of a few  simple 
random  processes by  methods of the  main  text.  These  illustrations 
a re  simple  in  the  sense  that  they  lack  heavy  formalism,  but  they  show 
most  of the  occasional  subtleties  in  continuous  random  processes.  The 
author  finds it saves time to  be familiar with  some  sample  problems of 
the  subject  and  to  return  to  them  for  guidance. 
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SECTION 3 
THE WAVE EQUATION 

The  sonic  boom  in  turbulence is a process  whose  analysis,  like 
that  of.many  other  continuous  random  processes,  starts  with a temporal 
propagation  equation  for  sample  histories.  This, i n  our   case,   i s  a wave 
equation f o r  sound  in a disturbed  medium P. Langevin14  discussed a 
random  process  whose  statistics m a y  be  found  without  solving its  propa- 
gation  at  all. When the  propagation  equation  for  the  sample  histories of 
a random  process  is   used only  to fix the  form of the  easier  equation f o r  
the  propagation of the  statistics,  then  the  former  is  often  called a Langevin 
equation. 

The  technique of solving  the  wave  equation  itself is to  be  sure 
an  attractive  branch of analysis,  whose  field of proper  application is 
large.  Its  scholars,  however,  have  used  detailed  solutions of involved 
wave  equations  whose  role  was  that of a Langevin  equation  for a process.  
Yielding  to  such a natural  compulsion  may  be  retrograde  in  some  cases 
in  proportion  to  the  complexity of the  process,  and is incidentally  out- 
side  the  spirit of modern  random  process  theory. 

The  wave  equation  basic  to  our  problem,  while  in  the  literature , 4 

is   derived  here  in  somewhat  greater  detail .   From  the first principles 
of aerodynamics, we quote  the  equation of mass  conservation,  namely 

- t V*(Pq) = 0 aP + 
a t  

4 

where p ( t ,  r )  is air density  and  r(x,  y, z )  is the  position  in  space  whose 
Cartesian  coordinates  are  x, y, a,nd 2. Temporal  epoch is denoted  by t 
and  the  local  vector  velocity by q(t, r) .  We recall   that ,   in  the  Eulerian 
soordinates  used  in  equation  (1) , a / a t  denotes a partial  derivative with 
r held  constant,  while V *  denotes a divergence  with t held  constant. 
In the  same  spirit,  we list the  isentropic  equation of state 

+ 

P = ( . ) y  
PO 

where p is   local   pressure and p is the  average of p over a sufficiently 
large  volume. po is a like  avergge of the  density,  while y - 1.4  is the 
well-known  ratio of specific  heats at constant  pressure and at constant 
volume.  The  equation of momentum  conservation is 

4 

-t - VP 
a t  t (quo);= - 

P 

To clarify  notation, we list for  the  vector (q V)q its  Cartesian  coordi- 
nate  which is parallel  to  the x axis,  namely 

+ + 
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For  the  total  velocity  q, we 
4 

where U is the  air  velocity  produced 
4 

( 4) 

write 

( 5) 

by the  sound  alone,  and ? the 
velocity  produced  by  turbuiekce  alone. - Such  a decomposition is possible 
when U << c  and V << c,  where c is the  velocity of sound.  With these 
inequalities 

where R is the  increment  in p produced  by  sound  and S the  increment 
produced by turbulence.  Similarly 

where P and Q are  pressure  increments  produced  by sound  and turbu- 
lence  respectively. 

The  subscript t will  denote a/at .  A substitution  in  equation 
( 3 )  from  expressions (5) ,  (6), and (7)  yields 

Gt t Gt + ( ( G +  0, v.)(v" + J)  

except  for  terms of second  degree  in R and S. We assume  the  ampli- 
tude of the  sound  small  enough so that 

where  the  brackets ( .  . . ) denote  the  expected'value  of  their  contents. 
We may  ignore U by comparison  with V where  neither is differentiated. 
Equation (8) then  becomes 

ct t Gt + v ' * V ( v "  + v') = ( - l / p o  + ( R  + S)/p:)V(P + Q) (10) 

Since  the  air  velocity  produced  by'typical  turbulent flow in  the  atmo- 
sphere  is  subsonic, we may  ignore  the  air  compression  produced  by 
such  flow,  which  amounts  to  putting 
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Also,  we  will  use  the  frozen  turbulence  approximation  expressed  by 

which is justified  by the reasonable  assumption  that at least   the statis- 
t ics  of  the  turbulent  flow  remained  unchanged  during  the  time of passage 
of  the  sound  packet  over  the  largest  important  turbulent  eddy. A t ime 
derivative of equation ( l o ) ,  with  use of relations (1  1) and (lZ), yields 

sttt (?*V)Ut = -vPt /po 
4 

except  for  terms of second  degree  in  the small quantities P and R. 

Equation  (1) , by  use of ( 11)  and (1 Z ) ,  becomes 

& t p o V * c t  V a ( R ? )  = 0 (14) 

except f o r 2  term V *(RU)  which  we  ignore  since it is of second  degree 
in R and U both of which are small increments  produced  by  the  sound 
alone.  However,  because of relation (9)  we  do  not  ignore  second  degree 
cross  products  between  the  velocity  proquced  by  the  sonic  field  and 
that  produced  by  turbulence.  From V * V  = 0, we  have 

+ 

Also,  from  equation (1) and  the  inequalities (6)  and (7) 

p/Po YR/Po , OR = VP/c2,   c2 c ypo/po 

where  the  symbol c denotes  the  velocity of sound in  the limit U = V = 0. 
From  equation ( 10) 

V P  = - pout 4 

except  for terms much smaller than poU t .  Substituting  in equat.ion (14) 
f rom (15), (16)  and (17) yields 

4 

P t / c 2 t  p 0 v 4  - poa*i3t/c2= 0 (18) 

But the  irrotational  vector  field u' satisfies 



0 = v X ( V  xv')  = v v * G - v 2 G  

The  gradient of equation ( 18),  with ( 19),  yields 

V P t / P 0  = - c v u + V ( J  a G t )  
a 2" 

Substituting  in  equation  (13)  from  (20)  yields 

Gtt t (7 V ) G t  + V ( J  *Ut)  = c 2 v 2- u (21) 

A comforting  partial  chesk of equation  (21)  can  be  obtained by 
specializing it to  the  case  where V is constant  and  in  the  direction of 
propagation of a purely  sinusoidal sound wave.  Equation (21) then  re- 
duces  to  the  familiar 

where m is the  sonic  frequency and Am its Doppler  shift.  Equation  (21) 
is what  the  wave  equation  for a uniform  medium  becomes  after  modifi- 
cation  to  account  for a small but otherwise  general  Doppler  effect. 

+ 
Since U is irrotational, we may  write 

where cp is a velocity  potential.  Consider  the  contour  integral of the 
second t e rm of equation  (21),  namely 

taken  over a spatial  path  whose  increment  is  ds.  The  path  ends on A, 
the  position of an  incremental  volume of air   prior  to  the  arrival of the 
sound pulse, and terminates  at  B, the  position of this  same  small  vol- 
ume a t 3  general  time t when  the  sound  pulse  overlaps A ,  a time  at 
which V and t are  evaluated  in  expression  (21). We assume,  in  ex- 
tension of relation ( 9 ) ,  that  the  distance D the  air   moves  as a result  
of the  passage of the sound over  point A is small+cQmpared  to  the 
important  scale  lengths  in  the  turbulent  vslocity V(r ) .  That is, we 
assume D is less  than a  few cm. Then V is almost  constant  over  the 
contour of integral  (24),  which  may  then  be  approximately  written  as 

7 



A substitution  in  equation (21) from  (23)  and (25) followed  by  integration 
over  the  above  contour  then  yields 

Turbulence is commonly  associated  with  air  temperature  fluctuations 
which result  from  the  large  scale  movement of air masses  originally 
at  differing  temperatures.  To  include  the  effect of such  tepperature  
variation, we replace  c2  by  c2( 1 + 0) where 0 = T(r)/To is the 
ratio of the  temperature  fluctuation T to  the  absolute  temperature  To 
averaged  over  many  turbulence  correlation  volumes  centered  at  the 
point  at  which T is evaluated.  Then  equation (25) becomes 

This,in  summary, is a l inear ized2calar  wave  equation  for  sound in a 
medium  whose  material  velocity V prior  to  the sound is small  com- 
pared  to  the  velocity of sound itself, and whose temperature  fluctuation 
0 is small  compared  to  its  mean  temperature.  Even though there  has 
been some adverse  commentl5 on equation ( 2 7 ) ,  this  equation is  in 
agreement  with  Tatarski 3 . 

F r o m  equati9nsJ10)  and  (1 l ) ,  and except  for  terms of second 
degree  in  quantities U ,  V,  P, R and cp, we have 

P = - P  cpt 
0 

Equations (26)  and (27)  will  be  used  to  find  the  statistics of fluctuations 
in  overpressure P when i t s  fductuations  reach up to a few times  the 
mean  overpressure. 
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SECTION 4 

SPATIAL TRANSFORM O F  THE WAVE EQUATION 

We proceed to a spatial  Fourier  transform of the  equation 
(3-27),  equation  (27) of Section 3. This  tentative  step  has  an initial 
motivation  not  closely  reasoned,  and  which is  chiefly  justified a pes- 
teriori .  We do recall,   however,  that  Fourier  transforms  have  been 
widely  useful  in  linear  partial  differential  equations, a c lass  which  in- 
cludes  (3-27)-  Also,  such  transforms  have  been so  convenient i n  analy- 
s is  of continuous  random  processes  that  it would  be a n  oversight not  to 
try  them,  even if they a r e  not a strict  logical  necessity. 

G. B. Whitham16 has  studied  the  pressure  pulse  produced  by 
a supersonic  airplane  in a uniform  atmosphere. He has  shown  that after 
the  pulse  has  traveled a distance of about 10,000 f t  f rom its source,  it 
then  has  the  form  shown  in  Figure 1 , where z is distance  measured  out- 
ward  from  the  airplane  in a direction  normal  to a surface of constant 

Figure 1 

pulse  overpressure P = p - po,  and  where Po - lb. /f t2 , A - 100 f t .  
are  typical  numerical  values.  Such  an  N-wave is largely  verified  by 
experiments,  which  however  show  spiky  random  fluctuations  in P. We 
will  treat  surfaces of equal  overpressure  in  the  incident  N-wave as 
plane.  Actually,  such  surfaces  are  somewhat  conical,  but  their  curva- 
tu re  is  unimportant  for  our  purposes  after  they  have  descended  from 
cruising  altitude (- 60,000 f t . )  to  an  altitude  from  below  which  most 
turbulence  effects are expected. 

The  above  structure of the  N-wave  suggests a coordinate 
system. W e  choosGright-handed  Cartesian  coordinates so that a gen- 
e ra l  point  in  space  r(x,  y, z )  is referred  to  an  origin  fixed  relative  to 
ground and above  the  turbulence, as in  Figure 2 .  The  direction of in- 
creasing z is  taken  parallel  to  the  mean  propagation  direction of the 
N-wave,  not  necessarily  vertical.  The  center  plane of the  N-wave, a 
plane of zero  overpressure,   then satisfies z = ct,  where t is a variable 
time. 
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Figure 2 

We write  the  partial wave  expansions 

4 -+ 
cp(t, r) = JH( t ,  s )  exp(is r - isct) d z  

4 4  

where 

-+ 
3 ( 4) 

s = ( s x y  s y ,  s z )  , ds = d s x d s y d s ,  

and where  the  range of inLegration is from - to +a for  each of .s, , 
s and s . The vector s is called  by  custom a three  dimensional 
spatial  frequency.  Equations ( 1 )  , (2)  and ( 3 )  define  the  partial  wave 
coefficients  H, 9 and 3; and our t%sk is  to find  some of the  statistics 
of H given  the  statistics of 8 and v. We will  assume  that  the  statistics 
of turbulence  are  constant  over  any  plane  in  air  which is parallel to 
surfaces of equal  overpressure  in  the  incident  N-wave.  This  assumption 
gives  slab  symmetry  to  the  statistics of the  scattered  N-wave  even 

10 



though its sample  histories  may  lack  such  symmetry. It suggests  the 
notation 

Simple  consequences of relations ( l ) ,  (2), (3 )  a r e  

exp[ i(2' t :'I) *; - i s ' c t  ] d:'  d:" 

or,  after  a  change  in  the  variables of integration 

O V 2 q  = - s I 2 0 ( z  - z ' )  H(:') exp(is * r  - is 'c t )  d z '  d; 
4 4  

( 8 )  

In  relations (8) and ( 9 ) ,  as  sometimes  in  the  sequel, we do not write 
explicitly  each  dependent  variable of a function  such as  H,  0 o r  ?when 
such a variable  has  the same value  throughout  an  equation.  It i s  im- 
portant  that a sample H changes  almost  always by only a small per-  
centage  over  any  temporal  wave  period l / s c  of interest  in  the  problem, 
because of the  weakness of typical  atmospheric  turbulence;  even though 

may  change  by a large  percentage  over  the  long  spatial  wave  paths of B nterest.  Thus 

I H t ( 3  I << sc  IHG) I (10) 

and the first t e r m  on  the  right of equation ( 9 )  may be ignored. 

We substitute  in  equation (3-27) .from ( 8 ) ,  (9)  and (1 0). W e  
recall  that  the  coefficients of 

e x p ( i s l * r )  , exp( i s ,*r ) ,  ... e x p ( i s i * r ) ,  ... e x p ( i s J * r ) ;  si#;, 
4 4  4 4  - I 4  4 4 4  

(11) 



are  all  zero  in  any  linear  combination of these  functions of r when  this 
combination is itself  zero  over  any  nonzero  three  dimensional  interval 
of F'. The  above  substitution  thus  yields 

"f 

H,, - 2icsHt = - [ c2sf28(: - ;I) H(;') f 2.5's" * V ( S  - S~)H(;~)C] 
- + +  4 

exp  [i(s - S I )  c t ]  d;' 

which is the  equivalent  by  Fourier  transformation of the  original  wave 
equation.  Equati.n  (12)  in  our  problem is sensitive  to a singularity  in 
the  function  H(t, s )  because of initial  conditions.  That is, at t < 0,  or  
when the  N-wave  has not  yet  entered  significant  turbulence, we have 

where 

and 6(s,) is a one  dimensional  delta  function.  Equivalent  to  equation 
(13)  is  the  relation 

Cp(O,-h = J k( 5) exp(iz5) d 5 (15) 

which  determines  k(t, 5) at t = 0 in   terms of the  initial  form of the 
N - wave. 

In  our  problem,  the wave detectors   are   pressure  sensors  
which do not  measure  the  wave  angle of a r r iva l  a a s  such. An a r r a y  
of pressure  sensors,  however,  does  measure  the  spatial  fluctuation  in 
the  total  pressure  produced by interference of all  sinusoidal  partial 
waves  which  comprise  the  scattered  N-wave.  The  dominant  scale  length 
observed  for  such  fluctuations is much  smaller  than  expected  with a non- 
turbulent  atmosphere,  which  justifies  use of the  initial  condition ( 13) , 
since  the  smaller  the  scale  length  the  larger  the  range  in  arrival  angle 
a required  to  produce  this  scale  length by partial  wave  interference. 
Fluctuations  in a sonic  boom,  like  those  within a laser   beam  in   a i r ,   a re  
spatially  spiky and neither  significant  nor  easily  measureable at scale 
lengths  larger  than  some  value L which  for  the  sonic  boom  case  is 
about 100 f t .  The pressure  sensors  thus do not  distinguish  angles of 
arrival  whose  difference is less  than Aa - l/sL, where s is some 
weighted  average of the  s@ar  spatial  frequency  in  the  N-wave.  The 
detailed  structure of H(t, s) when u is in  the  interval 

o < c r < c r  - < / S I J  0 (16) 

is hence  ignored  for al1,t. Henceforth we may  replace  the old H(t, s) 
of equation ( 12) by h(t ,  s) t k(t ,  5) 6 (u) with  the  under  standing  that  both 
k(t, 5) and h(t, 3 are  nonsingular. In the new notation,  equation (12) 

4 
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becomes  the  pair of coupled  equations 

(17. 1) 

[kt,( 5) - 2icskt( 5) 6(;) = - l[ c 2 s I 2 8 ( z  - :I) 4- 2s's  *v( 5 - s')c] * . 
4 4 4  -t 

[h(z ' )  + k( 5') 6(:')] exp[i(s  - s ' )c t ]   dz '   (17.  2) 

Inertial and thermal  effects  on  scattering,  represented by v ,  
and 8 , enter  unsymmetrically  in  equation ( 17).  They are  symmetrical  
in  the  equation of Crow2  for  f irst   order  scattering  from a weak  shock. 
This  makes  our  analysis  less  compact  than  his.  Also, we must now 
seek  the  temporal  de  endence of k ( t ,  G), for  which  there  is no analog 
in  the  works of CrowP or  Tatarski4.  A natural  intuition  expects a tem- 
poral  decline  in  k(t, 5) which is somewhat  exponential,  but  details 
remain  to  be  explored. 

4 

The considerable  structure of equations  (17)  makes  them  un- 
attractive  or  infeasible  to  solve  as  such  for  plural  scattering  effects 
and in  the  numerical  detail  needed  for  comparison  with  experiment. 
We attempt no solution of equations ( I  7). Rather, we note a property 
of the  functions 

These  functions,  with  their  complex  conjugates , comprise+a  set of 
eight  functions of the sLngle runnLng variable  t,  for  fixed sl. For  the 
aggregate of the  fixed s1 in  the  s-plane,  these  eight  functions  become 
replaced by  a continuum of functions  each  dependent on  t as  the  single 
running  variable. Such  a  continuum comprises  precisely  the  Hamilton- 
ian  state  variablss  for a radi2tion  field  regarded  as a mechanical s y s -  
tem.  Since  h(t, s) and ht(t,2)  are  uniformly  continuous  in t and s 
throughout  the f u l l  range of st space of interest ,  and since  k(t, 5) and 
k t ( t ,  5) are  similarly  continuous  in t and 5; we may now replace  the 
continuum of state  variables by a countable  discretum+of  them,  one  for 
each of the  discrete  infinity of small  cells  which f i l l  st space.  Equa- 
tions  (17)  ma2 now be  replaced by  quite  analogous  finite  difference 
equations  in s and t, although  for  br.evity we will  commonly  avoid  an 
explicit  finite  difference  notation.  Such  discretization is realist ic 
because it corresponds  to  the  limited  resolution of wave detectors of 
whatever  kind.  Such  discretization  avoids  need  for  the  theory of 
measure ,  a matter  discussed by Gikhmanl7. 
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.The above  introduction of discrete  variables  makes  N-wave 
scattering a problem  in  statistical  mechanicsl8,  which  contains  several 
routes  for  finding  the statistics of a system  without  solving its sample 
propagation  equation.  The  route  we  will  use  goes  beyond  the  usual 
good man's  intuition.  Hence we devote  the  next  section to an  introduction 
of the  needed  statistical  concepts. 
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SECTION 5 

STATISTICAL SYMMETRY 

Surfaces of equal  pressure  within  the  scattered  N-wave  are 
randomly  corrugated. A s  such,  they  possess no strict   symmetry  rel-  
ative  to  simple  transformations of the  space  through  which  they  move. 
Yet these  surfaces,   to a good approximation,  possess  much  spatial SF- 
metry of a statistical  sort.  The  present  section  introduces  pertinent 
statistical  symmetries  from first principles. 

A random  function F(t) is called  statistically  uniform i f  its en- 
semble  averages  or  statist ics  are  independent of t. For  example,  i f  
F(t) is uniform,  then 

are  all  independent of t. Take 

F( t) = If( w) exp(iwt) dw (2) 

which  defines  the  partial  wave  coefficient f (  w) of F(t). If F(t) is uni- 
form,  then by ( 2 )  

i s  independent of t ,  which requires 

where Y ( f )  is a constant  pertaining  to  f, and 6( w) is the  delta  function 
of w .  Substitution  in  equation (3 )  from (4) yields 

Direct  extensions of relation (4) a r e  valid  for  the  higher  degree 
covariances of the  sequence (1). If F(t) is  stationary,  then by expres- 
sion ( 2) 

(F ( t ' )  F(t' + t ) )  = s ( f (w ' ,  f(w"))  exp[i(w't' + w"t '  + w l ' t ) ]  dw'dw' (5) 

i s  independent of t '  which requires 

( f (  w ' )  f( w") ) = Y ( f f ; w ' )  6( w '  + w") 
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where Y(ff;w') is some  function of w '  pertaining  to  the  product f(  w ' )  
f(w'1). Substitution  in  equation (5)  f rom ( 6 )  yields 

(F( t ' )  F(t' t t ) )  = Y(ff;w) exp(iwt) dw (4.2) 

Equation (4.2) and its Fourier   inverse  are together  called  the  Wiener- 
Khinchin  theorem, when taken  with  appropriate  weak  restrictions on 
F(t). Similar  to  equation (4. 2) , we  have 

(F(t") F(t" t t') F(t" t t '  t t) ) 

= s Y ( f f f ; w ,  w ' )  exp[i( w ' t '  t wt' t w t )  ] dwdw' (4.3) 

Let F*(t) be  the  complex  conjugate of F(t). A slight  extension 
of equation (2)  is then 

F(t) = s f ( w )  exp(iwt) dw 

F*(t) = s f*(  w) exp(-iwt) dw 

from  which 

dw' dw" ( 8 )  

If F(t) is uniform,  then  by  equation (5) 

(F*(to) F(to t t) ) = J Y ( f * f ; w ' )  exp(iwt) dw ( 9 )  

Usually, and in  the  sequel, when  we speak of the  spectral  density of 
F(t) without further  qualification, we always  mean Y(f*f; w )  , which is 
abbreviated as Y ( f ;  w ) .  Some  authors  use  the  average 

( I F(t' - t) - F(t') 1 2, 

and call it the  structure  function  D(t)  associated  with  the  random  function 
F(t). It is simply  related  to  the  covariance. If F is rea l  and uniform, 
its structure  function is 
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The  idea of statistical  uniformity i s  easily  extended  to  several 
dimensions. For exasp le ,  i f  F( 7 )  is a random  function  uniform  over 
the 7 -plane,  where 7 equals (x, y),  then 

(F( TI) F( 3' t 7 )  ) = 1 Y(ff;a)  exp(iz * f )  d s  
+ 

(12) 

If the  st3tistics of F( 7 )  are independent of the  direction of the  vector f, 
then F( 7 )  is called  statistically  isotropic.  Then,  in  equation (12) 

+ 

Y(ff;a = Y(ff;cr) (13 )  

. where u is the  length of the  vector u . If F is isotropic,  equation  (1 2 )  
"f 

becomes 

where 

J0(x) = ( o J 2 ~ )  exp(ix  cos 8)  d 8/2a ( 1 5) 

is the  Bessel  function of order  zero.  

The  idea of uniformity  gains  in  struct2re when  applied to   sever-  
al distinct  random  functions. If F( ?) and G( 7 )  a r e  two random  functions, 
each  uniform  over  the  7-plane,  then 

where  the  le4  member is  called thesross   covar iance  of F and G,  and 
where Y(fg, w )  is  some  function of w called  the  cross  spectral  density. 
Uniform2t.y  and isotropy of F are  symmetry  properties  which  express 
that F( 7 ) )  is statist ically  inyaria2  under  trasslations and  rotations of 
the  1-plane. If each of F( ?), G( ?), and H( 7) is  uniform  and  isotropic 
over  the  ?-plane,  then as a simple  extension of equation (4. 3) we can 
show 

(F(7") G( t ? I )  H(T1' + TI t 7) ) 
= JY(fgh; ~ ~ , ~ ~ , ~ a r ~ ) e x p ( i ~  *;I t i f * u  t iq*s) dz '  d z  (17) d +  

Equation ( 17) is justified  by  noting  that  the  provisos  on F, G, H I;equJre 
the left member of equation ( 17) to be a function of 7 , 7 I ,  and 7 7 I 
alone,  which  in  turn  require that Y ( f  g h  . . .) be a function of 0,  0' and 
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- + +  
u U' alone.  Expression (17) may  have  an  important  symmetry  invari- 
ance  under a group  which  contains  the  translations  and  rotations of the 
11'' plane as a proper  subgroup.  For  example (17) may be  invariant 
under  the  group  which is the  direct  product of the  group of translations 
and rotations of the "(7' plane  alone  multiplied  by  the  group of t rans-  
lations  and  rotations of the 7 '  plane  alone. If this  higher  symmetry is 
valid,  then 

(F( ?") G( f" + q) H( 1" -k 7' -k y) ) = ( F (  f)) (G(  f ') H( + f) ) 

4 4  

= ( F )  sY(gh;cr) exp(i7 *u) d; (18) 

and then F is statistically  independent of G and H. Such  higher  sym- 
metries  are,impoGtant fo+r cov_ariances  of  the  fourth  degree.  For  exam- 
ple,  let F( I), G( V), H( ?), J( 7 )  be  four  uniform and isotropic  random 
functions,  where  each of F and G is statistically  independent of each 
of H and J .  Then a slight  extension of (18) is 



SECTION 6 

SECULAR STATE VARIABLES FOR THE SONIC FIELD 

The  present  section  derives,  from  the  primary  wave  equation 
(4-12), a modification  which  applies  to  certain  temporal  averages of the 
primary  sonic  state  variables  which  were $traduced in  Section 4. in 
more  detail,  4we consider  the  average H(t, s) of the  random  sample 
function  H(t, s) over a time  interval y which is taken a s  at least  a small  
integral  multiple of the  associated wave period  l/(cs). In a typical  at- 
mosphere,  foryvhich E <<+1, the  percentage  change  in  almost  every 
sample of H(t, s) for  any s is very  small  over  any  interval y .  We 
hence  lose but unimportant  detail  in  the f u l l  statistics of the  fluctuations 
of H  when  we replace  the  sample  functions  H,  H, by E, Et; but we 
thereby  gain  much  in  analytic  simplicity. 

The  wave  equation (4-  12), when  v is  temporarily  ignored,  be- 
comes 

We will  co,nsider  only  the case,  which  applies  to a turbulent  atmosphere, 
whsre e (  s) is almost  always  highly  peaked  very  near s = 0, even tJough 
e( s) may  be 0 at precisely s = 0. Then  the  spectral  density Y (  8,  s) i s  
highly  peaked  near s = 0. In this  case,  the  dominant contribytion+ to  the 
integral of equatisn  (1)  comes  from  values of s '  such  that 1 s - s '  I << s 
for  all  values of s of interest .  And then  exp [ ic( s - s ' ) t ]  has o n l y  a 
very  small  percentage  vsriation  dusing a wave  period  l/(cs). But  equa- 
tion  (1)  shows  that  Htt( s) and H,( s) have  large  percentage  changes 
during  the  interval  l/(cs).  Although H,  itself  undergoes  large  variations 
during a t ime  interval  l /(cs),   i ts   contributions to changes i n  H(t, i?) dur ing  
such  an  interval  is  small  compared to  H. That i s  

is  true  almost  always.  The  lower and upper  limits of integration  in 
equation (2  are  indicated  as t and t f [ l / cs  1. In suFmary ,  we may 
picture H( s) as in  Figure 3. Here the  regular  term  h(s)  has  an  instanta- 
3eous  ensemble  average  (h(t, s) )  which i s  0 for all t  and for  all  those 
s for  which cr is greater  than  in  any of the  significant  partial  waves 
which  comprise+the  well-collimated  incident  N-wave.  The  singular 
te rm  k( t ,  5 )  6 ( r )  represents  any  partial  wave  coefficient  for  which  k(0, 5) 
is significantly  nonzero  in  the  incident  wave  packet.  Clearly  (k(t, 5 )  # 0 
in  general.  The  time  after  which  the  expected  energy  in  the  incident 
partial  waves is less  than  about  l/e of its value  at t = 0 will  be  called  the 
saturation  t ime,  or t ,  . 



Figure 3 

The left member of equation (1) possesses  a simple  integrating 
factor  exp ( -  2icst),  which  allows a strict   formal  integration of this  equa- 
tion,  namely 

H,( t ,s)  = exp(2icst) [ - J ~ ' s ' ~ e ( ; f  - 2') ( O J t )  H(t '2')  exp[-ic(s + s ' ) t ' ]  d;'dt' 
4 

where H,(O, s) is the  possibly  nonzero  initial  value of H,(t, s) .  We will 
use  the  integration  formula 

-+ + 

which is valid  provided  the  percentage  change  in  the  function  Q(t) is  
very  small   compared  to 100 percent  over  every time interval of duration 
1/( cs).  When formula (4) is used  to  evaluate  the  inner  integral of equa- 
tion ( 3 ) ,  the  latter  becomes 

Ht(t,:) = ~ c 2 s ' ' 8 ( ~  - :I) H(t , z ' )  exp[ic(s - s ' ) t ] / [ ic (s  + SI)] 



The  average of equation (5) over a time  interval y >> I/cs,  with a center 
at time t,  yields 

- H,(t,;) = [ c ' s ' ~  - 2') - H(t,;') exp[ic(s-s ' ) t ] / [ ic(s  + S I ) ]  d s '  (6)  

since s - s f  << s as explained  above, and since  the  y-averaging of the 
final  term of equation (5) yields 0 as y approaches  infinity.  Equation 
(6)  is theqropagation  equation  for a random  process  whose  state  functions 
a r e  H ( t ,  s) ,  H*(t, s) ,  a separase  pair of such  functions of time  alone  for 
each of the  distinct  values of s. It is this  random  process  to  which  we 
will  apply  the  concepts of Section 5. Since  equation (6) ,  as distinct  from 
( I ) ,  does  not  require  rapid  oscillations of its state  variables;  equation 
(6)  is  called  the  secular  differential  equation  for  the  wave  packet,  while 
H and H:R are  the  secular  state  variables. It is important  that  the  secu- 
Tar equation is of lower  differential  order  than  the  strict  wave  equation 
( I ) ,  a matter  with  close  analogies  in  planetary  mechanics. 

3 3  

A formal and strict  time  integration of equation (3 )  yields, with 
use of formula (4) 

H(t,:) = (OJt)  c2s''€)(; - ;I) H(t,G')  exp  lic(s - s ') t '   I / l ic(s t s ' )  ldt '  d;l 

t Ht(0,;)[exp(2icst) - 1]/(2ics) t H(0,;) 

where  H(0, s) is the  initial  value of H(t, s) .  The  y-average of equation 
(7)  eliminates  the  term 

4 + 

H ( 0 ,  exp(  2ic  st)/(  2ic s) ( 8) 

and  shows  that  the  nonsecular  wave  equation (1) is consistent  with a 
meaninaul  y-average  for H in  the  case of weak  turbulence and a form 
of Y( e ,  s) which is  very  peaked  near s = 0. 

An an  application of the  b2sic  propagation  equation (6 ) ,  we pro- 
ceed  to  study  the  variation of k(t, s) with  time. We use  the  brackets 
( . . . ) to  denote  the  ensembleaverage of their  contents. When cr = 0,  
the  ensemble  average of equation (6)  becomes 

( k ( t ,  5) >t 6(;) = Jcs" ( - 21) g(t,;l) ) exp[ic( 5- s ' ) t l /  
( 9 )  

\ i( 5 + SI) 1 d;' 
Equation (9)  requires  thaLthe  covariance ( e ( s  - s' )  €I(t, s) )  be  singular 
and  contain  the  factor 6 ( r )  else  its left  member is 0, which is agsns&, 
hypothesis. To study  this  covariance,  multiply  equation (7)  by e (  5 - s), 
average  over y and ensemble  average,  which all yields 

+ +  4 
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( e (  5- s f )  H(t, s ' )  ) = (OJt)c2s"2 ( e ( <  - :I) e(:' - z") H(t,:") ) 
4-b  

- 

When e << 1,  then  the  correlation  between  any e (  s) and any  H(t, ;I) is 
much  less  than 1 when 

+ 

where L denotes  the  correlation  length of the  random  function Q (r) .  
By definipion 

4 

where u i s  a dimensionless  unit  vector  in  any  direction. 
+ 

The  limits of integration  on  the  right of equation  (15)  properly  denote 
integration  from  the  latest  instant of the first y integral  following  the 
time  origin  to  the  latest  instance of the y interval  in  which  lies  the  epoch 
of observation,  This is because k is itself  an  average  over a y inter-  
val. With this  understanding,  the  trial  solution 

reduces  equation  (15)  to 
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correct  in its constant of integration.  Substituting  in  equation (9) f rom 
( 16) and ( 17) yields at once 

which is an  integral  equation  for  determining  the  function a( 6 ) .  

The  function a( 5 )  which  satisfies  equation  (18) is imaginary 
valyed when the  chief  contributions  to  the  integral  (18)  come  from  values 
of s '  for  which 

which is the  case  for  values of Y ( e,  z) typical of near  ground  atmospheric 
turbulence.  However,  this  does  not  imply  a  lack of energy  loss  in  the 
incident  beam. 





justified  in  evaluating (H*H )t when E << 1,  since  the  subsequent  time 
integration of (H*H ) will  then  account  for  all  significant  contributions 
to (H*H ) f rom all orders  of scattering.  The  neglect of t e r m s  o( e '), 
o( e4) etc.  in  evaluating (H*H ) through e_*nsemble averaging  following 
the  computation of sample  histories  H(t, s) i s  not similarly  justified. 
These last two remarks  contain  the  core of our  method. 

To explore  the  average  within  expression ( Z ) ,  we consider its 
time  derivative,  namely 

( e ( ;  - 2) Ht*(t, 3 H(t,<')  exp I i c ( s  - s')t I )  
+ ( e ( ;  - ;I) H*(t,:) Ht(t,:") exp  lic(s - sl)t I ) 
t (e(;- ;I) H*(t,z) H(t,;') ic(s-s ' )   exp  l ic(s  - s')t 1 )  

r m  After  substituting  from  equation ( 6 - 6 )  in  the first two te  
become 

(5 )  

s of (5 ) ,  th 

- s  
Factoring  moments as in  equation (4) yields 

By the  statistical  uniformity  and  isotropy of turbulence  in  our  model, we 
have 

- 4   + 4  

( e ( s  - SI) e(s - SI!))= Y(  e ;  s - SI) 6 ( s  - s") 
+ - +  4 4  



where Y( e ;s) i s  the  spectral   density of the  dimensionless  temperature 
fluctuation O (  r) . 

3 

Substituting  in  expression (6) f rom (7) through  (10)  yields 

Since e (  s )  in  turbulence is highly  peaked  near s = 0,  the d o s i n p t  con- 
tribution  to  the  integral  (2) i s  from  values of s '  such that I s - s '  I is 
onlyg  few  t imes 27r/L2 where L, is the  largest   important eddy  diameter. 
H ( t ,  s), for all s and t >> L2/2rrc,  varies  by a very  small percentage 
over  an  eddy  traverse  time when <C 1.  Hence  the  final  term of expres- 
sion (5)  is negligible  compared  to its first two terms, which  equal  ex- 
pression  (1  1).  Substituting  from  equation ( 10) in (4) and  then  from (4) i n  
(3)  shows  expres2ion  (3)  to  be o( E T / t s  ) where t ,  is  a time  interval 
over  which  H(t, s) changes  by a large  percentage,  for  any s. Hence  we 
ignore  expression ( 3 )  

4 

The  above  analysis of the  terms of quantity  (1)  followed by 
direct  substitution  in  (1) and time  differentiation of ( l ) ,  both  simple 
steps,  yields 

(H*(t, S I )  H(tyz l ) )  - 2 (€P(t, s) H(t ,G)  ] d z  t cc t o( s3) 
"5 S -+ 

( 12) 

Equation  (12) is  a basic  propagation  equation  for  the  second  moments  of 
a wave  field  in  weak  turbulence. In4the sonic  boom proble-m with  inci- 
dent  plane  waves,  the  function  H(t, s) is discontinuous  in s in  the  manner 
discussed  in  Section 4. We thus  need a slight  generalization of equation 
( 12),  obtained  in a manner  almost a duplicate of that  used  to  obtain ( 12). 
This  generalization is 

( w q  H ( s 2  >tt 

t (lS2) 
. I  
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where  the  symbol (1*2) denotes  the  complex  conjugate of the two pre-  
ceding  terms  with  their  subscripts 1 and 2 interchanged.  In  equation 
(13)  we  have  chosen c ( s l  - s a )  to be  much less than  any  inverse tLme 
of  interestjin  the  problem,  in  preparation  for  eventually  allowing s1 to 
approach s 

By Section 4 we  have 

where we ignore  terms  containing  factors (hk* ) or  (h*k ), since  such 
fac tors   a re  0 by the  statistical  symmetry of the  turbulence and  the 
initial  conditions of the  problem.  The  same  sxmmetry  requires  that 
the  phase of each  partial  wave  coefficient  h(t, s) be  between 0 and 2rr 
with  uniform  probability.  That is 

The spectral  density Y(h; 5, UJ isjndependent of the  direction of the 
tran-sverse component u of s I (u, G), but may  depend on the  direction 
of s .  Substituting  in  equation ( 13) from ( 14) and (1  5) yields 

= - J  c 2  s: s t 2  -" 
2s1 ( s a  t s ' )  exp  [ic(sl - s.)t] Y (  g;s ,  - s ' )  a 

+ J c 2  I g1 - d, + 3 I "  s t 2  + - +  
(sl t s ' ) ( s l  + I STl - srz + 5.7 I - 

(k*( 5 - G 2  - s')k( 5') ) 6(gl - gz - 6(Gt) 1 dz '  + (1*2) 

(16) 

The  compatibilitg of sinsularities  in  equation  (16)  requires 
that  its  coefficients of 6( ( r l )  6 ( ( r , )  in  the two membeLs of the+equation 
he  equal.  Equating  such  coefficients and then  letting s and s, approach 
s yields 
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S,imil%rly equatins  coeificients of 6 ( u1 - u ) in  equation ( 16) , now with 
s1 = (my  GI) and s 2  = ( u ,  G a ) ,  yields 

+ 4  

The  terms of equation ( 18) a r e  compatible  in  their  singularities,  in 
consideration  thatgxpression  (18)  has  meaning  only  after  integration 
over a volume of u 5 5 space.  Similar  consideration of course  does 
not make all the   t e rms  of equation (16) compatible.  All  contributions 
to  quantity  (17) are from  double  scattering  within a few  eddy  traverse 
t imes,  as are all contributions  to  the first. term on  the  right of equation 
(18).  The  second term of the  right of (18)  arises  from  single  scatter- 
ing  from  one  to  another of those  partial  waves  which are 0 at t = 0. 
The  third  term of equation  (18)  accounts  for  single  scattering  from 
incident  partial  waves  to  others.  The first Born  approximation, 
commonly  used  in  problems of the  present  type, is  equivalent  to  ignor- 
i n g  equation  (17),  ignoring  the  first two te rms  of (18)  and  their  analogues 
i n  the  three  terms of (1;?2), and  to  replacing  (k"(t, c 1  - c 2  - 5 ' )  k(t ,  5 ' )  ) 
by (k*(O, G 1  - 5 - 5 ' )  k(0, 5 I )  ) in  the  third  term of (18). 
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SECTION 8 

SATURATION O F  WAVE FLUCTUATIONS 

The  present  section  derives a simple  expression  for  the  wave 
pathlength  L,  in  turbulence beyond  which  the  mean  square of wave 
fluctuations  almost  ceases  to  grow  with  increases  in  pathlength. 

With a slight  abbreviation,  equation (7-17) becomes 

where 

m 2  e = s c 2 z  z + s  Y (e;;- ;I) dzl 

The  solution of equation ( 1 )  is 

In physical  interpretation,  equation ( 3 )  introduces a temporary 
paradox.  The  left  member of ( 3 )  is commonly  viewed as  proportional 
to  the  energy  per  unit  range of the  spatial  frequency 5. A natural  in- 
tuition  then  indicates  that  this  left  member  should  depend  on  time  only 
through a factor  exp  (-at),  where a is some  real  valued  quantity  inde- 
pendent of t ime. By this  viewpoint,  taken  literally,  there is no under- 
standing of the  above  time  factor  cos ( m e ) .  The  resolution of the 
paradox  rests on recognizing  that  there  is no general  validity  in  the 
idea of a well  defined  energy  density  in  frequency  space,  however  use- 
ful  this  concept  may  be  in  some  cases.  Strictly,  energy is a property 
of the  entire  wave  packet.  The  energy of the  unscattered  portion of 
the  packet is an  integral  which  contains  the  quantity (3 )  in  its  integrand. 
A s  time  increases,  the  value of this  integral  does  decline  in  somewhat 
the  manner  indicated by intuition  because of the  increasingly  rapid 
oscillations of cos ( m e )  relative  to  changes  in 5. The  above  paradox 
occurs  also,  in  slightly  different  form,  in  the  simpler  problem of 
Appendix A 4 .  

The  attenuation  from  true  absorption, of the  partial  waves 
within a small  frequency  range of a beam, is indeed  expressed by a 
factor  exp (-at) with  real  and  positive  a. Many analysts  will  agree  that 
beam  attenuation  from  scattering  alone is never  strictly  expressible  in 
such a manner.  However,  several  authors 20, 21 have  derived  ap- 
proximate  formulae  for  the  above  real a for  the  problem of incident 
partial  waves  attenuated  only  by  scattering  in  turbulence.  Caution  in 
the  use  of  such  alphas  has  been  indicated  in  the  review  by J .  B. Keller . 2 2  
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The  effective  attenuation  time  for  the  partial  waves  which 
comprise  the  incident  packet of plane  waves  may  be  obtained by con- 
sidering  the  function 

Am = (dm/dc) A g  ( 4) 

where A c  is the  bandwidth of the  spatial  frequencies  in  the  incident 
packet. When the  time t in  equation (3) becomes  great  enough so that 
t a m  1 ; then  the  oscillations of cos  (mt)  relative  to 5 reduce  the  value 
of the  integral of (3 )  over  the  range A c  , and  by a factor of about l /e  
relative  to  the  value of this  integral  at t = 0. Hence  l/Am is the  attenu- 
ation  time  for  the  partial  waves  in a narrow  banded  incident  packet; and 
dm/d 5 is the  inverse  attenuation  time  per  unit  bandwidth.  The  wave 
pathlength  covered  during  such  an  attenuation  time is  

L, c/Am (5) 

There is reason  to  call  L, the  saturation  length  for  fluctuations of the 
packet  produced  by its passage  through  turbulence.  For  when  the 
pathlength  in  turbulence is less than L , , then  the  partial  waves  scat- 
tered  from  the  incident  partial  waves  grow at the  expense of energy  in 
the  incident  waves. But  when this  wave  path is greater  than L, ,  then 
the  scattered  waves  can  change  chiefly  only by interchange of sonic 
energy  among  themselves,  since  their  source of energy  has  then  chiefly 
vanished. We identify L, with a saturation  length  measured by Gracheva 
and Gurvich5in  optical  beams  which  have  traversed a pathlength  in  tur- 
bulence of 1 km  or   more.  The  analysis  leading  to  equation (3 )  applies 
to  these  optical  beams if  we understand 0 ( r )  to  be  twice  the  fluctuation 
in  the  index of refraction of the  atmosphere.  The  above  analysis is not 
clearly  valid  unless 

a restriction not  satisfied by the  lower  frequency  partial  waves  which 
comprise  the  incident  N-wave.  However, as S. C. Crow  has  emphasized, 
it is only  the  frequencies  for  which (6) is satisfied  which  produce  the 
higher  peaks  in  the  fluctuations of boom  overpressure  at  ground  level. 
When the  incident  wave  packet is broad  banded,  or  when A c  is not very 
small  compared  to a middle  frequency  for  the  packet, as in  the  sonic 
boom case,  then a single  saturation  length  for  the  entire  packet  does 
not exist. In this  case,  because of the  dependence of me( 5) on 5 ,  small 
frequency  intervals  centered  at  the  larger  values of 5 become  saturated 
before  those  centered at lower  values. When relation (6) is satisfied, 
then ( 2 )  reduces  to 
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In  the  high  frequency  approximation, and  when Y( 8 ;s) = Yyg s 
in  homogeneous  turbulence,  then  the  integral of equation (2)  becomes 
elementary,  and  this  equation  reduces  to 

+ - w 3  as 

Here Y is a quantity  which is slightly  weather  dependent  but  independ- 
ent. of s. 

A natural  hope  has  been  that  the  chief  features of wave  fluctu- 
ations  in  turbulence  might  be  independent of the  large  eddy  diameter 
L, , which is not  the  best known parameter of turbulence  in  the  atmo- 
sphere. In several  important  phenomena  involving  limited  wave  path- 
lengths  this  hope  has  been  realized;  although it does not seem  justified 
at the  larger  pathlengths at which  saturation  occurs. 

SECTION 9 

SATURATION  FROM RANDOM VELOCITIES 

The  present  section  treats  velocity  effects  in  about  the  same 
way  the  previous  section  treated  thermal  effects. In  addition  it  briefly 
reviews  knowledge of the  spectral  density of turbulence. It concludes 
by  listing  the  Fourier  transform of the  incident  N-wave. 

+ 
If we temporarily  set  e (  s) = 0 for all s ,  then  equation  (4- 12) 

+ 

becomes 

H t t  -2 i c sH = - 2cs 's '  * V ( S  - s f )  H(s') exp  l ic(s - s ' ) t  I d s '  
4 +-+ -+ 4 + 

t 

which is what  equation ( 6 - 1 )  becomes  after  replacement of the first of 
the two expressions 

by  the  second.  With  this  replacement,  the  equations of Section 8 apply 
without  further  change  to  the  analysis of velocity  effects, down to 
equation  (6-14).  The  quantity  (6-14),  after  the  replacement (2) ,  be- 
comes 

4 ( s 1 * v ( s  - SI) S " * V ( S '  - S"))/(C2S'S") 
4 ++ + + + 4  + 

In  homogeneous  turbulence,  components of velocity  in  perpendicular 
directions  are  uncorrelated,  which requires 
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And when  the  turbulence is isotropic 

Thus  the  average  within  quantity (3 )  is 

(SI *V""*V") = (s;s:'v;v;' t s;s'Jv;v;' s; s ,  1 1  v lv ' , )  

= s f  s"v,(s - s ' )vx ( s '  - sf ' )  
+ +  + - +  + +  

- 4  + +  
= s'"Y(v;s - SI) 6(s - 6") ( 6 )  

.where Y(v; s) 9 the  spatial  spectral  density of a single  Cartesian 
3 

component of v. 

Substituting  from  equation (6) in  ( 3 )  yields  for  expression ( 3 )  

+ +  
4Y(v;s - st )  6(s  - S") /C"  

-34 

(7) 

Comparing  expressions (6;14)+and (7) shows  that Y (  0 ;  s - S I )  need  be 
replaced  simply by  4Y(v, s - s1)/c2in  order   for   the  resul t  (8-1) to 
apply  to  velocity  effects. In more  detail,   for  the  case of wave  fluctu- 
ations  produced  only by small  random  velocities  in  the  medium  through 
which  the  waves  move,  we  have 

4 +  

with  the  definition 

In  homogeneous  turbulence,  temperature  and  velocity  fluctuations  have 
zero  cross  correlation,  or ( 0v ) = 0. Thus,  for  the  case  of  temperature 
and velocity  fluctuations  acting  together, we have 
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where 

m 2  = m e  2 + m,2 

When I 5 I is very  large  compared  to 2.rr/L2 , then 

(10.1) 

(10.2) 

where 

n 2  = c 2 1 y ( e ; z -  2) d 2  + 2 l Y ( v ;  s - s’) ds’  
+ +  + (10.3) 

We now consider  the  form of the  functions  Y(v;a and Y(  e;?. 
A famous  dimensional  argument  by  Kolmogorov3, 23 shows  that  in  homo- 
geneous  turbulence 

Y(v;s) = 0.041 C,”s 
4 - 11/3 

where C,” is independent of s and is called  the  strength of the  turbulence. 
The  coefficient C,” is proportional  to vv:/L, where v is  viscosity  and 
v,  the  mean  scalar  velocity  in  the  smallest  eddies  present,  whose  dia- 
meter  is denoted  by L,. Relation ( 1  l ) ,  now checked by several  experi- 
menters ,  is widely  valid  provided 

The  inertial  subrange of eddy  diameters L is given  by ( 12) with s = 2r/L. 
By an  extension of relation  (1  1),  it   can be  shown  that 

where C” is called  the  strength of thermal  fluctuations,  or  the  strength 
of therm&  turbulence.  The  numerical  constants 0: 041  and 0.033  in 
equations  (1 1)  and (13)  are  in  part  conventional,  but  are  needed  for  the 
above  customary  definitions of C e  and Cy. The  ratio C e /C is some- 
what  weather  dependent;  but at least  not  too far from  the  earth’s  surface 
it is typical  that 

a relation  which is based  on  sonic  experiments  by M. A. Kallistratova , 
and which we use  in what  follows. 

24 
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A procedure  for  finding  typical  values of C g  perhaps as good 
as any now available,  involves  the  relation  between C and  fluctuations 
in  beams of light.  The  spectral  density  for  atmospheric  fluctuations  in 
the  optical  index of refraction  may  be  written4 as 

a 

Y(n;s) = 0.033  Cz s 
4 - 11/3 

It can  be shown that 4 

Cn = 79 a10 -6 p Ce/T 

where T is  temperature  in  degrees  Kelvin and p is total  ambient  pres- 
sure  in  millibars.  Optical  measurements4,  show  the  value of Cn to  be 
in  the  range 

near ground  and  in  about 80 percent  or  more of nominally  unbiased 
choices of weather  conditions.  Various  atmospheric  models  allow  for 
a smooth and gradual  change  in Cn and C 8 over  several  km of altitude. 
Such  models  are  useful  at  times  in  the  case of light. In  the  case of 
sonic  boom  data,  the  parameters  which  enter  in  such  atmospheric  mod- 
els  have not usually  been  measured at the  time  data  were  obtained. In 
what  follows, we will  assume  that  the  sonic  boom  is  scattered by  a layer 
of turbulence of uniform  strength  between  the  ground and an  altitude of 
several  km. 

The  log-normal  distribution  is  an  almost  invariable  feature of 
the  fluctuations of waves  in  turbulence, at least  after  the  pathlength  in 
the  atmosphere  is 1 km or   more ,  and  commonly at much  shorter  path- 
lengths.  Measurements of the  irradiance of light,  in a beam  which  has 
traversed  several   km of turbulence,  have  shown it to  be  log-normal 
within  one  percent  almost  irrespective of weather  conditions.  The  data 
of Garrick and Maglieril2show a log-normal  distribution  for  the  random 
component of boom  overpressure.  The  Rytov  method is a theoretical 
approach  which  yields  the  above  log-normal  distribution  for  waves  whose 
path is in  homogeneous  turbulence  with  the  spectral  density  (1 1) for  the 
random flow velocity; and  with a uniform  strength C: for  the  turbulence 
all  along  the  wave  path.  This  result now appears as an  artifact of the 
approximation.  Analyses  which  include  the  mQltiple  scattering of waves 
in  uniform  turbulence,  for  example  de  Wolf’s9 , show that  the  scattered 
waves  are  uniformly  distributed  in  phase; and that  their  irradiance  has 
a Gaussian  distribution  in  vector  frequency or a Raleigh  distribution  in 
scalar  frequency. 

How may we  explain  the  everpresence of the  above  log-normal 
distribution? We surmise  that it i s  produced  by  the  spatial  intermittency 
of atmospheric  turbulence.  That is, we consider  the  coefficient C,” of 
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expression (1 1) to  be a random  function of position  along  the  wave  path- 
length, a function  with  scale  length  large  compared  to L, . Then  the 
spectral  density of the  noise  comprised  by  the  scattered  waves  will  wax 
o r  wain  in a random  manner as the  wave  path  covers  regions of stronger 
or  weaker  turbulence.  Unfortunately,  the  parameters of typical  inter- 
mittency  do  not  seem  well  enough known to  serve  as  input  for a detailed 
calculation of the  pressure  peaks  in  sonic  boom. In numerical  work, we 
will  stay  with  the  spectral  densities (1 1) and (13). Since  values  listed 
for C: and C: have  been  obtained  from  measured  data by a method 
which  ignored  intermittency;  these  values  may  perhaps  compensate  for 
a lack of intermittency  in  the  theory, a matter beyond the  present  study. 

Equation (10) calls  for  the  specification of the  spatial  transform 
k(0, <) of the  incident  wave  packet.  This  transform  has  be  n  studied  by 
J. R. Young 25, and a lso  by P. B. 0ncley.and D. G. DunnZ2.  The  in- 
cident  N-wave  has  the  form 

where P is overpressure,  Po is  the  peak  value of P, and 2A is the 
height of the  region  over  which  the  N-wave  extends.  The  Fourier  trans- 
form Q( <) of the  function P(z) i s  

By Section 4, the  overpressure is related  to  the  velocity  potential cp by 

Since 

we have 

or,  by  equation (19), the  transform of cp at t = 0 is 
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which  expresses  the  initial  condition  for  our  stochastic  boundary  value 
problem. 

SECTION 10 

ENERGY CONSERVATION 

The  present  section  formulates  the  principle of energy  con- 
servation  for  sonic  fluctuations.  It  then  specializes  this  principle  to 
the  high  frequency  approximation. 

The  sonic  energy E, per unit cross  section of a tube  with 
axis  parallel  to  the  mean  wave  propagation  direction  and of infinite 
length,  is 

E = 8 po ( - m  s m )  U:gUdz = 1 p o s V c p * * V c p  dz ( 1) 
" 4  

where po. is mean air density, U is  the  sonic  contribution  to  the  vector 
air velocity, and cp is the  velocity  potential. 

4 

The  inequalities 

are  proper  for  pathlengths of the  sound'in  turbulence  which  are not so 
long as to make  unrecognizable  at  ground  the  original  N-shaped  form 
of the  overpressure at high  altitude.  Measurements  obtained  at  the 
ground are   represented in  Figure 4. Only  the single  pressure  history  at  
the  upper  right of the  figure  suggests  violations of relations ( Z ) ,  which 
we take to be almost  always  satisfied. In computing  statistics  at  ground, 
we will  hence  replace  equation (1) by 

As  in  Section 4, we have 

cp(t,? = s [h( t ,  3 + k(t, 3 S(2 1 exp (ir * s  - isct )   ds  
+ +  -+ 
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A substitution  in  equation (3 )  f rom (4), with  use of ( 7 -  15) yields 

E(t) = 8 p o l  ( [h*(t, 2') h(t, 2') + k*(t, 5 ' )  k(t, 5 " )  &(;I) 6(2') 
(5) exp [i ( s '  - s") c t ]  ) exp [ig*(2' - 5 ' 5 "  d 2   d z '   d z  

as the  total  energy  in  terms of the  ensemble  average (. . . ) . We have 

We may  use  relation (6) in  performing  the  integration  over z indicated 
in  equation (5) so long as the  integrand  in (5) is not singular at 5 '  - 5" 
= 0. Using (6) in  (5) yields 
E(t)  = p o l  ([h*(t, 5 ' , u ' )  h(t, 5' ,u ' ' )  3. k'x(t, c ' ) (k t ,  5 ' )  6(2) 63'1 "3 

From  equation (7-15) 

Use of equation (8) in ( 7) yields 

which is  an  expression of energy  conservation  specialize<  to  the  geo- 
metry of our  problem. When  t = 0, equation (9)  becomes 

In our  model,  true  sonic  absorption is ignored, o r  E(t)  = E(0).  Thus, 
subtracting  equation (10) f rom (9) yields 

which relates  the  energy  in  the  scattered  waves  at  any  time  to  that  then 
remaining  in  the  incident  beam. 

The  next  paragraphs  derive a specialization of equation ( 1  1) 
important  in boom analysis. A variant of equation (8-1) is 
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where 

(12.1) 

where 5 denotes  the  average of 5 and 5 b . Equation  (12) i s  valid 
providez 

and is derived  almost  the  same  as  equation ( 8 - 1 ) .  There  are  signifi-  
cant  contributions  to  the  third  integral of equation (7-18) only  when  the 
factor  (k*( 5,) k( 5 b ) )  in its integrand  satisfies  relation ( 1 3 )  
since Y ( 0 ;s) i s  highly  peaked  near S = 2r/Lz.   Thus,   near   or  
after  the  saturation  time  for  frequency 5 = ( 5, t cb) /2 ,  the  function 
Y (h;t ,  5 1, G 2 ,  u) will  oscillate  relative to-changes in G1, o r  5 with a 
period l/(Et) = l/(nCt);  this  because of contributions  to Y t t (h ;  . . . )  
from  the  third  term 02 equation (7  - 17) 

We note  that  the  effect of incident  frequencies  in  the boom does 
not strictly  vanish  at  saturation;  but  then  only  produces  in Y (h;  . . .) 
strong  oscillations  relative  to  changes  in  frequency  or  time. The aver-  
age of Y(h;t, c 1  , 5 2, u) relative  to G 1  , or  5 and over a range A 5  7 l/nt 
hence  has a dominant  peak  centered  at 1 5 - 5 I = l /(nt) .  We may 
approximate  this  peak by a delta  function,  which is the  same  as  writing 

where x is  the  power  spectrum of noise  whose  frequencies  possess no 
phase  correlation. 

Within  the  wide band of frequencies  which  comprise  the  sonic 
boom  at  ground,  let b denote  the  lowest  which is saturated.  Sonic 
energy  may  be  localized  in  the  frequency  domain  to  within  an  uncertainty 
less  than 1 /( n 5t)  . Thus, by  equations ( 5) and ( 14),  the  sonic  energy 
within  saturated  frequencies is 

Eb( t )  = pol(bJm) ( [ X ( t ,  S I )  6(2' - 4 s") + k*(t, 5 ' )  k(t ,  c ' )  S(;"l) 6($')] 

exp  [ ic(s '  - s")t] ) exp [ir '(s ' '  - S I ) ]  5 ' c " d g '   d z '   d z  + +  + 

(15) 
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We perform first the  integration  over s” in  the first t e r m  of expression 
( 1 5 ) ,  and perform first the  integration  over z in  the  second  term.  The 
result,  in  place of equation (9) is formally 

+ 

In equation (16), the  proper limits for  the  integration  over z 
have still to  be  specified. If the  random  noise  with  quasi-local  proper- 
ties  fully  described  by x extended  over all values of z, then  the limits 
in question  would  indeed  be  infinite.  The  domain  over z of this  noise 
is less  than  infinity,  however,  because of i t s  wave  interference  with 
frequencies  less  than  b.  That is, frequencies 6 for  which 5 < b al-  
most  fully  determine  the  form of the N-wave  except  within an  interval 
l/b of its leading  edge,  and  within a like  interval  near  its  trailing  edge. 
We do not  here  record  the  somewhat  tedious  Fourier  analysis  which 
confirms  this  conclusion. With l /b as the  range of integration  over z 
in  equation  (16),  after  properly  ignoring  the  final  term of (16), and 
after  subtracting  equation (10) from ( 1 6 ) ,  we obtain 

The two integrands  in  equation (17)  may  be  equated  because 
sonic  energy is quasi-localized  in  frequency when 5 > b.  Thus 

where, by relation ( 9 - 10) of Section 9 

b = l / (n  t)  (19) 

Equation (18)  is the  desired  specialization of energy  conservation; and 
is an  analytic  expression of much of the  high  frequency  approximation 
used  previously by S. C.  Crow2  in  sonic  boom  analysis. A virtue of 
equation  (18) is that  it   transforms  the  statistics of high  overpressure 
peaks  into a problem  involving  little  more  than wave saturation,  which 
by  equations ( 8 -1) and ( 8.-8) i s  one of the  rare  simple  features of 
multiple  scattering. 
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SECTION 1 1 
POISSON STATISTICS  FOR HIGH OVERPRESSURES 

The  present  section  compares  theoretical and experimental 
values  for  the  nominal  lowest  frequency b at which  saturation  occurs. 
We then  apply a formula of S .  0. Rice,  which  leads  to  an  expression 
for  the  probability of pressure  peaks  above a given  value. 

A numerical  value  for b may  be  obtained by use of the  turbu- 
lence  parameters  listed  in  Section 9 . .  In  a nominally  unbiased  choice 
of weather  conditions  near  ground,  the  arameter Cn for  the  optical 
refractive  index is  below 6 10-9  cm-lY3  with a probability of about 
10 percent, and above  12 cm- /3 with a li e probability. For a 
numerical  example, we choose Cn = 10-8,cm- I F 3 ,  which su'ts  gusty 
conditions. To this  value  corresponds  Ce = 14- ~ r n - ~ t ~ ,  by  the 
relations of Section 9 .  And to this  corresponds 

as  an  expression  for  the  spectral   density of relative  tern  erature  fluctu- 
ations  in  turbulence.  The  functions Y ( 8 ; s) and Y'(v; s)/c'   are  equal by 
Kallistratova's  relation ( 9 - 14).  Thus,  equation ( 1),  with ( 8. - 11) of 
Section 8 and with  the  above  choice of Cn,  yields 

The  above  values  for Cn came  from  optical  data3 and  a model 
for  the  altitude  distribution of turbulence of the  single  step  kind,  accord- 
ing  to  which Cn is  constant  from 0 to 10 km  altitude, and zero  at  higher 
altitudes.  The  time t for  the  traverse of sound through 10 km  is  t 3 3  
sec. With this  value of t raverse   t ime,  and  n = 16 cm/sec. we have 

b = ~ T / X  = 2n/(nt) , or  h 5 meter ( 3) 

where h b  denotes  the  largest  saturated  Fourier  wavelength.  The  value 
Ab = 5 m is obtained  from  the-theory and optical  data only. The  ex- 
perimental  boom  histories shown in  Figure 4 column  (b),  where  the 
duration of each  history is about 0 . 2  sec,  show a random  disturbance 
whose  length is also about 5 m.  Better  agreement  between  an  involved 
theory and a somewhat  weather  dependent  phenomenon would have  small 
significance. 

Garrick and  Maglieri12show  data of chief  importance  as  the 
probability $g) that  the  measured  overpressure  in a boom at  ground 
possess  at   least   once,   during its observation  by a single  microphone, 
a maximum  which  exceeds a nominal  value Pn by  a ratio g.  The  value 
Pn represents  the  single  maximum  expected  without  scattering  from 
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la) Lw wind wlocltfes. (b) High wind velocities (gusty). 

Figure 4. Time  histories  of  sonic-boom  overpressure  showing 
wave-shape  variations  between  microphones  for  two 
flights of a B-58 airplane  on  different days. 
(From ref. 12.) 



turbulence.  Probabilities of type II(g) have  been  studied  by S. 0. 
Rice27, Z8. They are in  general  complicated  functionals of 'the spectral  
densities  with  which  random  functions  are  usually  and  most  simply  de- 
scribed.  But when g is  large  enough s o  that n(g) <<1, the  case of chief 
interest  for  the  data,  then  Poisson  statistics  apply; 

For   Poisson  s ta t is t ics   there   exis ts  a function  M(g, Z) as a 
probability  per  unit  distance Z, measured  from  the  central  plane of 
the  boom,  that  the  pressure  noise  exceed  the  nonrandom  pressure  Q(Z) 
on  which it is  superposed  by a factor g. In  the  case of a sonic  boom 

Q(Z) P b(A-Z)/2n, A -  - <  Z < A  
0 b 

277 
( 4) 

where A is the  half  distance  between  leading  and  trailing  edges,  and 
Po is peak  pressure  expected  without  scattering  by  turbulence.  Equa- 
tion (4) represents  a straight  line  consistent  with  the  lowest  graph of 
Figure 4. A result  of Rice27,  for  the  above  function M, is 

where 

and 

and where w( 5 ) is the  spectral  density of the  noise  in  the  overpressure. 

To find w( 5 )  we  use its definitionz9  adapted  to  pressure  noise 
of finite  duration,  namely 

exp [- i C  ( Z I -  Z")]  dZ'  dZ" 

where  P(b;  t ,  Z )  denotes  the  contribution  to  total  pressure  P(t, Z )  f rom 
spatial  frequencies  greater  than b. Since  the  noise of interest  consists 
of a superposition of partial  waves  whose  phases  are  uncorrelated,  the 
noise is Gaussian,  with  spatial  and  ensemble  averages  assumed  equiva- 
lent.  The  ensemble  averaging of equation (8) does not  change  its  left 
member,  since  w(5)  for  stochastic  noise i s  a n  ensemble  average  as  well 
as a spatial  average.  But  such  ensemble  averaging  replaces P*P on 
the  right of equation (8) by (P*P ) . By equation ( 3  - 2 8 )  , 
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P = - poc cp ; or   in   t e rms  of the  Fourier  transform of 

(P*P) = p: C' [ ( [h*h -k k*k S(z') ti(;") ] 

+ +  
exp [ i c (s '  - s") } 5' 5" ds'   ds" ( 9 )  

Equation (9) is valid  in  general.  For  saturated  frequencies  .p*P)be- 
comes (I?( b ; t ,  2) P( b; t, Z ) )where t is the  t raverse   t ime of the sound 
in turbulence.  In  this  case  the  second tsrm of (9) may  be  ignored, 
while its  first term  then  becomes  the  energy of scattered  waves  at 
frequencies  higher  than  b,  except  for a constant.  The  expressions 
for  this  energy  derived  in  the  final  paragraph of Section 10 transform 
equation (9) to 

in  which  the first term  makes  .the  dominant  contribution  to  values of 
P( Z )  near  the  leading  edge of the  boom.  Substitution  from  equation (1 1) 
in ( l o ) ,  and then  from ( 10) in (8), yields 

exp [ - i c ( Z '  - Z") - i c ' ( Z '  - A) t i c " (Z"  - A ) ]  d c ' d  5" d Z '  dZ" 

(12) 

In equation ( 1  2), we integrate  over 2' and Z" with  the  approximation 

( A - 2 ~ / b  SA)  exp[iZ ( 5 '  - 5") ]  d Z  - 2~ 6 (  5 '  - 5"); 5 '  > 1/Z , 5" > 1/Z 

( 1 3 )  
which  yields 

Definition (6)  then  becomes, by substitution  from (14) 
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Then (7) becomes 

an  integral  which  diverges  at its upper  limit. 

Taking  account of true  atmospheric  absorption of ultrasonic 
waves  in  the  atmosphere  will  change  the  integral  for D, so that it con- 
verges.  A stronger  reason  for  convergence is the cutoff frequency 
f l o 4  Hz of the  modified  condenser  microphones  used  in  obtaining 
data.  Hence  we  replace  equation (16) by 

Relation (5) ,  by use of (15) and (17) becomes 

1 1 
- 2l-r [b(f - b) 1 exp [- I T ~ ' ~ Q ~ / P ~ ~  ] 

SECTION 12 

GRAPHICAL RESULTS 

The  present  section  exhibits  significant  agreement  between 
data  for  random  peaks  in  overpressure and the  analysis of multiple 
scattering  in  typical  atmospheric  turbulence.  Exceptions  to  such  agree- 
ment  are  noted. 

In  equation  (1 1 - 18) of Section  11 , the  function  M(g', Z )  i s  a 
probability  per  unit  length  that  random  pressure  rises  above  its  non- 
random  base  value Q by  a ratio  gI+l.When  g'  is  such  that  the  total 
overpressure   r i ses  above its single  peak Po expected  without  turbulence 
by  a factor g, then g tQ t Q = gP, , or  
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where 

and  where  f-b  has  been  replaced by f since f >>  b. The  differential of 
equation ( 3 ) ,  by use of expression  (11-4), i s  

dX = bdZ/2 

A change  in  the  variable of integration  in  equation ( 2 )  yields 

The error  integral ,   as  usually  tabulated,  is defined a s  

erf(x) = ( 2 /  nu” ) (Osx) exp(-x”)  dx 

Substitution  in  equation (5 )  f rom ( 6 )  yields 

Figure 5 shows  plots of equation ( 7 )  for  three  different  weather 
conditions, as shown in  the  curves  drawn  solidly.  The  superposed 
curves,  drawn  dashed,  summarize  extensive  experimental  data.  The 
dashed  curve (2)  is consistent  with  the  theory i f  we suppose  that  data 
with  the  highest   overpressure  peaks  are  taken on  the  average  in  more 
gusty  weather  than  those  with  the  lower  peaks.  Each  theoretical  curve 
represents  a single  value of Cn o r  a single  value of gustiness.  The 
dashed  curve  (b) is similarly  consistent  with  the  theory if  we  may as- 
sume  that  the  root  mean  square  turbulent  velocity  was  about  twice as 
great  for  curve  (b) as it was  for  curve (a). Curve  (c)  agrees  neither 
with  the  other  experimental  curves (a), (b)  nor  with  the  theory;  for 
reasons  on  which  we  are  unclear. It seems  plausible  that  there  was 
a n  unusually  quiet  atmosphere  effective  at  the  time  the  data of curve I C )  
were  taken;  and  that  there  was  then  insufficient air mixing  to  produce 
homogeneous  turbulence. 

The  agreement  between  data and theory, as shown in  Figure 5 
gives  interest  to  an  exploration of the  sensitivity of the  theory  to  values 
of some of the  weather  or  turbulence  parameters  on  which it is based. 

F4gure 6 shows  the  dependence of II(g) on  the  thickness of the  turbulence 
of the  atmosphere;Figure 7 shows  the  dependence of n(g)  on  the  cutoff 
frequency of the  sonic  detector.  Figure 8 shows the  dependence of TI( g) 
on L, , the  outer  scale of turbulence. I1 (g)  depends  on L, only  through 
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r heiqht  of  effective  layer  of 
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Figure 5. Measured and Calculated  Values  of n ( g )  
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F i q u r e  7 .  Dependence of n(q) on Detector Cu to f f  f 
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Figure 8. Dependence of n(s) on  Outer  Scale L2 
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the  6th  root of the  lat ter;  so that  plausible  uncertainties  in L, a r e   l e s s  
important  than  uncertainties  in  the  general  leva1 of gustiness.  Figure 9 
shows  the  dependence of saturation  length L on  frequency 5 ,  for  the 
case of a single  frequency.  Broad  banded  pulses of sound saturate first 
at their  higher  frequencies when  subject  to  small  angle  scattering  in 
turbulence. 

The  absence  in  equation (7) of any  reference  to  A,  the half 
length of the  sonic  boom,  need  not  be  taken  too  literally. If the  strength 
of turbulence  in  the  earth's  atmosphere  were  ten  or  more  times  greater 
than it is in  fact;  then  substantially all frequencies  in  the  sonic  boom 
would be  saturated.  In  such a case  the  N-shaped  form of an  overpres- 
sure  history at ground would be  almost  fully  lost, and  the  boom would 
appear as noise  whose  Fourier  components  almost  all  have  random and 
uncorrelated  phases. When such  atypically  strong  turbulence  occurs, 
equation (7) does  not  apply;  and  then  n(g) is  significantly  dependent  on 
A. That l7 ( g )  is in  practice  almo t independent of A is  supported  by 
the  data of F i g   r e  17 of reference'2,  and has  been  previously  discussed 
by S. C. Crow- .  2 

The  relative  simplicity of equation (7)  comes  chiefly  from two 
reasons,  we believe.  First,  the  wave  pathlength of the  boom  in  turbu- 
lence is large  compared  to  the  diameter of a single  eddy, so that  the 
random  features of the  boom  at  ground  result  from  the  combination 
(not  the  simple  addition) of many  small and statistically  independent 
effects.  Second,  the  above  wave  pathlength is small  compared  to  that 
required  for  saturation of the  lower  Fourier  frequencies of the  N-wave, 
so  that a high  frequency  approximation  may be used  in  computing  the 
dominant  effect of small  angle  scattering  by  turbulence. 
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SECTION 13 

SUMMARY 

The  extensive  data of Garrick and  Maglieril'have  been  inter- 
preted  in  large  part  in  the  preceding  study.  The  case  treated  from 
first  principles is that of random  overpressure  peaks  with  maxima 
which  exceed  by  an  unusual  amount  the  single  pressure  peak of a sonic 
boom  in a smoothly  varying  atmosphere.  The  random  pressure  peaks 
have  been  attributed  to  small  temperature and velocity  fluctuations  in 
typical  atmospheric  turbulence.  This  attribution is supported by the 
agreement  between  the data and the  calculations.   Errors  in  the  basic 
analysis and numerical  work  are  believed  small  compared  to  uncertain- 
ties  about  the  turbulence  at  the  times  data  were  measured. 

Gustiness  near  ground,  in a layer  of a i r   f rom a few  hundred 
to a thousand  feet  thick,  may  infrequently  produce  turbulence so strong 
that its effect  on  wave  propagation  outweighs  that of all turbulence 
above  that  ground  layer.  The  statistics of microflow  in  such  unusually 
active  ground  layers is not  well  understood,  nor  does  the  present  study 
treat  their  effect on  sound.  Barring  such  ground  layers,  the  random 
pressure  peaks  observed  in  sonic boom a r e  now understood, we believe. 

The  analysis  has  been  influenced  by  the  complexity of the  wave 
scattering  problem  presented by a sonic  boom  in  turbulence.  This  com- 
plexity  arises  largely  because  the  N-shaped  form of the  dependence of 
overpressure on  altitude  contains a  wide range of important  component 
frequencies. It is a broad  banded  signal. Wave scattering by turbu- 
lence  is  a strong  function of sonic  frequen.cy;  with  the  highest  important 
frequencies ( - 10 4Hz) randomized  within a 10 meter  length of wave 
path  in  typical  atmosphere  near  ground.  This  small  pathlength  for 
randomization  requires  multiple  scattering  in  the  quantitative  analyses 
of boom statist ics.  

The  analysis  used is a natural  extension of the  single  scattering 
theory of S. C. Crow  whose  conclusions  have  been  verified  more  quanti- 
tatively. The basic  theories of Tatarski,  on the  general  problem of 
wave  propagation  in  random  media,  have  been  somewhat  extended  in 
principle,  toward  the  inclusion of multiple  scattering  effects.  The 
analysis  used is an  outgrowth of the  theory of Brownian  motion  and 
other  random  processes  which  are  subject  to  relatively  simple  proba- 
bilities  asymptotically  valid  at  large  times, as explored  by A. Khinchine. 
Saturation  lengths and probabilities  for  unusually  high  overpressures 
have  been  given as  expressions  in  closed  form.  Portions of the  analysis, 
chiefly  Sections 6 ,  7 and 8 , may  be  ultimately  applicable  to  the  scat- 
tering of optical,  radio, and plasma  waves  in  random  media. 

Study of sonic  boom  supports  the  hope  that  additional  atmospheric 
effects  may  be  subject  to  more  quantitative  understanding. - 
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APPENDIX A1 

NON-MARKOVIAN PROCESSES,  REMARKS 

The present  study  concerns  Markov  processes, and of a 
special  type.  In  the  present  section we clarify  what a Markov  process 
is by remarking  on  what it is not. 

A Markov  process  relative  to  an  interval  may  be  defined  as 
one  with  state  functions  the  time  averages of whose  statistics,  over  an 
observation  time  interval t centered  at a time  epoch  t,   have  rates of 
change  expressible at least  In  principle  as  functions of the  above  aver- 
ages  over  the  same  time  interval to. When the  interval to shrinks  to 
a single  instant  at  epoch t ,  then  the  above  definition  specifies a s t r ic t  
Markov  process. When the  interval of observation to is large  com- 
pared  to  some  natural  time  scale  in  the  process, as is true  in  many 
applications,  then  the  difference  between a strict  Markov  process and 
one  relative  to  an  interval  is  important. It is not  quite  clear  that a 
process  which is  strictly  Markovian  need  be  Markovian  relative to  an 
interval,  while  the  converse is untrue. 

0. 

All processes ,  we may  allege,  are  Markovian  from  the  full 
microscopic  viewpoint. All the  laws of nature  in  classical   physics  are 
causal;  in  the  sense  that  rates of change of members of a complete  set 
of Hamiltonian  state  variables  for  any  closed  mechanical  system  at  an 
instant t are  expressible  as  functions of the  state  variables  evaluated 
at that  same  instant. A similar  remark  holds  in  quantum  theory i f  the 
state  variables  are  taken  for  example  as  the  spatial  Fourier  components 
of the  full  wave  function  for  the  system. We here  ignore  the  somewhat 
speculative  exceptions.  From  the  microscopic  or  maximally  detailed 
viewpoint,  randomness  can  enter  into  the  motion of a system  only  as 
an  expression of our  partial  ignorance of initial  conditions, a matter 
much  explored  in  ergodic  theoryJ7  But  such  randomness,  combined  with 
causal  state  propagation  equations,  leads  only  to  Markov  processes. 
Jus t  how non-Markovian  processes  can  ever  occur  is a nontrivial  ques- 
tion on  which we  now comment. 

An inadequacy  in  the  microscopic  viewpoint  occurs  when,  as  in 
magnetic  hysteresis, we a r e  unable  to  work  out  even  the  statistics of a 
complete  set of state  variables  for  the  molecules of an  i ron  bar ,  but  do 
know the  growth of its magnetization  empirically. We then  use  state 
functions  to  describe  the  bar  which  are  quite  allowable,  because  the 
growth of their   statist ics is determined  in  principle  with  the  aid of 
empirical  knowledge;  but  which  are  far  from a maximally  detailed  set 
of state  functions. It may and sometimes  does  happen  that  the  changes 
in  this  less  than  maximal  set of state functi.ons is non-Markovian.  This 
has not  been  shown  to  contradict  microscopic  causality. 

A further  inadequacy of the  microscopic  viewpoint  occurs when 
our  knowledge of the  coupling of a mechanical  system  to its surroundings 
is chiefly  through only a few of their  statistics. An example is a chemical 
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solution  in a heat  bath;  another is  the  colloidal  grain  in  Brownian  motion. 
In such a case,  we naturally  model  the  non-isolated  system  as a random 
process  with  state  functions  which  refer  only  to  the  system of chief  in- 
te res t ,  and  the  surroundings  are  represented  by  the  occurrence  in  the 
state  propagation  equations of random  functions  pertaining  to  the  sur- 
roundings.  Such a reduction of state  functions  from  the  maximum 
allowable  number  may  or  may  not  lead  to a non-Markovian  process. 

Consider a volume of gas  with  temperature T ,  entropy S, heat 
content Q, and  on  which  the  work  done is W.  By the  second  law of 
thermodynamics 

TdS = dQ -t dW ( 1) 

Assume,  as  is  very  possible,  that  equation (1) is supplemented by three 
others,  so that  the  temporal  propagation of the  joint  probability  density 
of T,  S, Q and W is in  principle  determined.  Then  T(t),  S(t), W(t)  com- 
prise  an  allowable  set of time  dependent  statistical  state  functions  for 
the  gas.  But,  as  is  well known, expression  (1)  is  not  in  general a per -  
fect   differential ,   or  S(t) ,   as a function of time,  in  principle  cannot  be 
specified  in  general  without  reference  to  past  history o r  to the  past  path 
of the  system.  Here  is  an  example of a c lass  of inherently  non-Markovian 
processes.  

Finally,  the  scattering of waves  in  weak  turbulence is not a 
strict  Markov  process  in  the  state  functions  which  describe  the  waves 
alone.  For as we saw  in  Sections 5 and 6 ,  it   is  precisely  the  instanta- 
neous  correlations  between  the  state  functions of the  waves  and  the  state 
functions  for  the  random  medium  which  determine  the  instantaneous  rate 
of change of the  state  statistics  for  the  waves.  Nevertheless , suitable 
time  averaging of the  statistics of the  state  functions of the  waves  alone 
makes  their  time  derivatives  dependent  on  only  the  local  time  statistics 
of the  waves  alone and the  constant  statistics of the  medium  alone,  to 
within a practically  small  time  interval.  Thus  the  wave  scattering is 
Markovian  to  within  an  interval. A formally  enlarged  random  process 
whose  state  functions  include  those  for  both  the  waves and  the  random 
medium  is  of course  strictly  Markovian, and also possesses  the  propa- 
gation  equations (4- 17), which  must now be  considered  bilinear  in its 
state  variables. But regarding  waves  in  turbulence  as a bilinear  process 
seems  to  change  only  the  viewpoint,  not  necessarily  the  details of the 
analysis  through  terms o( Q 2). 
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APPENDIX A2 
MAXWELL'S  DISTRIBUTION 

We now give a simple  application of the  concepts of Section 5 .  
Consider a gas  composed of molecules all of the  same  type  and  within 
an  enclosure of constant  volume. W e  assume a central  force  field  sur- 
rounding  each  molecule so that  the  potential  energy of the ith molecule is 

where  q,  denotes  the  vector  position of the ith molecule  and V is the 
potential  energy of interaction  between  the  ith and jth  molecules.  The 
Hamiltonian H for  the  gas  will  then  be 

4 

where  the  prime on C '  indicate2  that  terms  in  the  summation  for  which 
i = j are  omitted.  Also  pi = mv, is the  momentum of the ith molecule, 
whose  vector  velocity is 3,. Henceforth  let  pi and qr.  without  the. 
arrow,  denote  any one of the  Cartesian  components of the  momentum 
and  position of a molecule.  Then  the  equations of motion  corresponding 
to  the  Hamiltonian (2)  a r e  

where a subscript t denotes  differentiation  relative  to  time.  Substitut- 
ing  in  equations (3 )  from (2)  yields 

q1t = Pi/m 3 Pi t  = - 

which  incidentally  defines  the  abbreviation U $. 
The  aggregate of a l l   the   pi  and q, ha3  properties  which  allows 

it  to be considered  as a set of state  functions F(t) in a Markov  process 
which  models the+ molecular  motion of the  gas.  That is, i f  the  probabil- 
ity  density W ( t ,  F) of all the  pi and  q , i s  given  at t = to;  then  the  time 
derivative of this  density is in  principle  given  at  later  times  through 
equations (4). The Fokker-Planck  (FP)  equation  for  the  gas, a special 
case of equation (15) of Appendix A6 is 

5 5  



The  averaging time or  observation  t ime  interval of equations (5 -  17) , 
over  which  we  average  the  instantaneous  statistical  properties of the 
gas,  is  taken small compared  to  the  time  during  which  the  gas is in 
equilibrium,  but  large  compared  to  the  mean  time t between  molecu- 
lar collision.  This same t ,  gives,an  est-imate o f  the  correlatb&time 
for  molecular  momenta. We now use  equations ( A 6  - 15)  to get 

where ( . . . ), denotes a conditional  average as defined  in  Section 5. 

W e  now assume  that a time  independent  statistical  state of the 
gas  exists. In more  detail,   we  assume a W / a t  = o( T)  for  this  state, 
that U, and U, with j not  equal h are  uncorrelated, and that  the  tem- 
poral  fluctuations  in U, are  statistically  uniform  with a correlation 
t ime about  equal  to t C. Then,  for  an  equilibrium  state,  equation (8) 
becomes 

which  defines o- as a constant  independent of time and of the p and  the 
q j ,  and where 6 is the  Kronecker  delta.  The  occurrence of t e rms  o( T) 

in  the  above  equations is  essential  in  careful  analysis as an  indication 
that we are  consistently  neglecting  changes  in  the  statistics  over a t ime 
interval  larger  than t , although  not  necessarily  over  an  interval  very 
much  larger  than t . The  consequences of this  very  useful and usual 
neglect of a physically  small but non-zero  quantity  are  easier  to  follow 
where  the FP equation is  taken  in  the  finite  difference  from (Ab- 15) .  
Henceforth,  however, we omit   terms o( T). Since T >> t we  have 

. ". 
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W e  assume  the  gas  to  be  sufficiently rare so that  only  binary  collisions 
are  important,  which  means  that terms of the  series  (5) not explicitly 
written  may  be  ignored. 

A substitution  in  equation  (5)  from  equations (6) ,  (7), ( 9 ) ,  ( 10) 
yields 

c a2w/ap; = o 
J 

As a trial solution  for  equation  (1 1) we  write 

W =‘N exp ( -p2  C p:) (12) 

where p is independent of the p and q 5  and N is here a normalizing 
constant.  Substituting  in  (1 1) f rom (12) yields 

3 

C n  [ ( 2 p 2 p j ) ” -  2p21  = 0 
J:1 

o r  

p 2  = n/(2 C m2v:) = 1/(2mkT) 
j S 1  

where n/3 is the  number of molecules  in  the  gas. The  final  equality of 
equations  (14)  amounts  to  the  definition of the  perfect  gas  scale  for  the 
absolute  temperature T, where k is Boltzmann’s  constant.  Substitut- 
ing  in  equation ( 12) f rom ( 14) , and then  integrating  over all the v ex- 
cept  one of them,  yields  the  probability  density W for a Cartesian 
component v of the  velocity of a single  molecule,  namely 

W = ( m / 2 ~ r k T ) ~  exp  (-mv2/2kT) 
I 

which is the  distribution of Maxwell  for  the  molecular  velocity  in a 
perfect  gas. 

A derivation  very similar to  that  just  given  for  equation  (15) 
yields  the  equilibrium  velocity  distribution  in a Fermi  gas  or  Bose  gas.  
We surmise  that   most of the  statistical  results  on  the  transport  proper- 
t ies  of neutral  gases30 could  be  obtained  starting  from  equation ( .A6- 15) 
Varients of the  full FP equation ( A b -  15)  have  been  used in the  study of 
the  transport  properties of plasmas 31. The  above  derivation of the 
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distribution of Maxwell is about as  r igorous as any. It is based on more 
detailed  probability  concepts  than  are  some  derivations. Its virtue is 
that it illustrates  on  familiar  ground a procedure  for  treating  more  in- 
volved  problems as Markov  processes. 
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APPENDIX A3 

SHOT NOISE 

In the  present  study,  the  averaging  time T is perhaps  the  most 
subtle  feature.  The  physical  meaning of T lies  in  the  limited  detail of 
the  data,  either  through  intent  or  through  the  limitations of apparatus. 
In  quantum  theory as   wel l  as in  communication  engineering,  such  an 
averaging  time is familiar.  The  present  section  contains  an  analysis 
of shot  noise  as  an  example  in  which  the  role of an  averaging  time  ap- 
pears  . 

Consider a uniform  beam of light  incident on a photomultiplier 
tube.  The  output  current I(t) from  the  tube is 

I(t) = e C F ( t  - t 5)  
j 

where e is the  electronic  charge,  where t is the  time  at  which  the 
jth  photoelectron is released  from  the  photocathode,  and  where F(t - t J )  
is the  short  pulse of output current  produced by this  photoelectron.  The 
measured  current Io averaged  over a time  interval T i s ,  by equation 
( 1) 

Io(t) = (tJt -+ T) C F( t '  - t J) dtf/T ( 2)  
J 

Apparatus  whose  temporal  frequency  resolution is 1 / ~  will  necessarily 
average  over T.  In  a good photomultiplier  tube,  the  halfwidth of the 
pulse F(t) i s  about 3 10-9 sec.  In  the present  section, we assume 
that T is much  greater  than  this  halfwidth,  or  that  the  frequency cutoff 
of  the  apparatus is less  than l o 8  Hz. The more involved case  where 
T may  be  less  than  this  halfwidth is discussed by S. 0. Rice28* 

Let n denote  the  number of photoelectrons  actually  released 
during  the  interval T. Let  (n ) be  the  expected  number  released, 
where  the  brackets (. . . ) denote  an  ensemble  average.  Then 

( I o )  = e ((tj't -k T )  C F(t' f t J )  dt ' /T ) 
3 

where 

( t J t  + T) F(t' - t J )  dt' = 1 

provided  the  epoch t lies  within  the  interval (t, t + 7 ) .  Similarly 
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I 

( I z ( t ) )  = e ”   ( ( t J t  + T )  C F(t’ - t dt’ 
J 

(tJt + T) C F(t” - th)  d t “ ) / ~ ’  
h 

= e”   (n2 ) /T2  

The  light  beam is considered  non-degenerate,  or  with  an  aver- 
age of much  less  than  one  photon  per  normal  mode of the  radiation  field. 
This  assumption su i t s  light  from  thermal  sources of temperature   less  
than 10 OK, as well as laser  light  after it is sufficiently  attenuated. 
With  this  assumption,  the  probability  per  unit  time  for  release of a 
photoelectron is constant  over T, and further  the  probability  for  re- 
lease of any  other  photoelectron. We write 

n = n   + n ,  + ... 
+ nm ( 6 )  

where  nl  is the  random  number of photoelectrons  released  during  the 
ith of m equal  time  intervals T/m which  sum  to T where m >> 1. 
The  mean  (nl)  and variance U T  of an  nl   sa t isfy 

Hence, by the  central  limit  theorem, n satisfies a Gaussian  probability 
density  whose  variance u” i s  

The  variance u of the  output  current b, by  equations ( 3 )  , (5) 
and (8) satisfies I 

= e2n/T2 = (Io) eAf 

where I/T = Af is  the  frequency  bandwidth of the  apparatus. When 
positive and negative  frequencies  are on an equal  footing,  which is  natu- 
ral when  an  imaginary  valued  exponent i s  used  to  represent a sinusoid, 
then  equation (9) becomes 
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which is the  standard  shot  noise  formula  much  used  in  electronic  and 
optical  engineering.  The  signal-to-noise  ratio (Io )/uI, by  equations 
(3)  and ( 9 ) ,  satisfies 

which is simply  the  expected  number of photoelectrons  released  from 
the  photocathode  during  an  observation  time  interval. 



APPENDIX A4 
WAVE SMOOTHING IN A UNIFORM  MEDIUM 

When a wave  packet  or  wave  train  traverses a random  medium, 
one effect is a. growing  irregularity  in  the  wavefronts as a result of their  
passage  through  the  nonuniformities of the  medium. As a second  effect, 
the  wavefronts are continually  made  more  regular  during  their  propaga- 
tion,  by  the  eventual  overlap of rays  from  neighboring  hillocks  in a 
wavefront and by  diffraction. It is  the  partial  cancelation  between  these 
two effects  which  produces  the  net  wavefront  distortion. In the  present 
section,  we  treat only the  second of these  effects.  The  analysis is r e -  
lated  to  optical  coherence,  discussed at length  by  Born and  Wolf32  and 
by L. MandelJ3. 

A purely  sinusoidal  scalar  wave  train  which  moves  in  the  posi- 
tive z direction of a Cartesian  xyz  space is represented  by 

E = Eo  exp  [ i(kz - w t ) ]  ( 1 )  

where E is wave  displacement, Eo is wave am litude, z is distance 
measured  along  the  z-axis, t i s  time, h = 2.ir P k is wavelength, and w 
is the  circular  frequency. We consider  the  case  where  the  wave  train 
differs  slightly  from  the  idealized  from ( 1 )  and  in  which 

E = U ( 3  exp  [i(kz - cot) ] ( 2)  

where+ U ( r )  i s  a complex  valued  function of the  three-dimensional  posi- 
tion r = (x, y,  z) . The  wave (2)  is assumed to move  in a uniform  medium 
for  which  the  wave  equation is 

+ 

where a subscript z o r  t will  denote  partial  differentiation. We make 
the  partial  wave  expansion 

where ll = (x, y) is vector  position  measured  from  the  z-axis,  where 
cr = ( c r x , c r y )  is a two-dimensional  spatial  frequency,  and u is a partial 
wave  coefficient.  Substitution  in  equation ( 3 )  f rom (2)  and (4) yields 

+ 

u,, t Ziku, - u ” u  = 0 (5)  

3 
We assume U(x ,  y, 0) to  be a random  function of x and y. Then 

U(u, e) is  also  random,  and  enters  in a random  process  whose state 

62 



functions,  with  v as a  new  notation  for  uZ,  are 

where * denotes a complex  conjugate.  That is, 2; is a  time-like  vari- 
able  in  the  process, and there  is a distinct  quadruplet of state  functions 
(6) for  ezch  distinct  quadruplet of state  functions (6) for  each  distinct 
value of cr. We assume  the  scale  length of U(x, y, 0) to  be  large  com- 
pared  to  a  wavelength A o r  

cr << k ( 7) 

o r  the  partial  waves  are  almost  collimated.  Then  the  change  in u and 
v  will  approach 100 percent  only  over  a  wave  pathlength A which is very 
:large  compared  to X. In  equations (A6-16) we  choose T to  satisfy 

Then  by  equations (A6-16) and ( 5 )  

{ u ]  = v + ~ ( T )  , {v] = -  2 i k v + c r " u + o ( ~ )  

{uu]  = {VV] = O ( T )  

We will use  the  abbreviation 

By equation ( A 7 - 3 )  and ( 9 )  

where, as henceforth, we omit  terms of order T .  Similarly 

* 
(Ui V J  ), = (ut b j 3  + V J  CU'i 3 ) * 
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W e  have now to  integrate  the  four  equations (ll),  (12),  (13), (14). 

The z derivative of equation (1 1) is, by (1 2) and (3)  

( u   u ) z z  = 2ik(v  u - u v )  t 2u2 ( u   u )  " 2 ( v   v )  
* * * * * (15. 1) 

where  we  have  omitted  subscripts i and j .  Subtracting  equation (13) 
f rom ( 12) yields 

* * 
( U  v - uv )z = - 2ik(u*u)z (15. 2) 

Equation (14) may  be  expressed as 

( v  d Z  =cr ( u   u ) ,  
* 2 *  

To solve  the  three  equations  (15),  consider  the trial solution 

* 
(u"u) = A exp (az) , ( v   v )  = B exp (az) 

* 

Substituting  in  equations ( 15) from ( 16) yields 

Aa" = - 2ikC t 2u2A f 2B 

Ca = - 2ikaA , Ba = r2Aa 

Equations  (17) are satisfied i f  

a = O  ~ 2ikC = 2u2A t 2B 

They  are  also  satisfied if  a*O and 

a2 = - 4k" t 4u" 

or  since k >> u, i f  

a = _+ 2ik r2/k 

(15. 3) 
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Thus, the complete  solution  for  (u*u) is of form 

* 
( U) = A. + A, exp  [(2ik - iv2/k)z] 

+ A ,  exp  [(-2ik + iu2/k)z] 

whose  secular part is 

(u u ) = A f A, exp  (-iu2z/k) 
* 

0 

+ A, exp  ( iv2 z/k) (22) 

where  Ao, A ,  and A, are functions  to  be  determined,  dependent  on u 
but  not  on z .  

The  spectral  density of U by  equations  (22) is  

Hence,  by  the  Wie3er-Khinchin  theorem,  the  covariance of the  wave 
train  (2) is, with Tl = (x, y) 

(E( r )  E(;+ 3) = Y(0,u) cos  (u2z/k)  exp ( i q  *IT) d z  
+ + 4  

which i s  the  chief  result of this  section.  Equation  (24)  gives  precision 
to  the  summary  statement:  that  the  random  hillocks of scale  length 
1/u = S in  an  almost  collimated  wave  train  will  fade b a factor of about 
e during a wave  propagation  path z of the  value z = S /A. Here  the 
a r e a  S2 is about  equal  to  the first Fresne l  zone of a wavefront  when 
viewed  normally  from a distance z = S2/)i. Otherwise  spoken, s2/x2is 
$he Fresnel  propagation  path  for a wavefront  irregularity of a r e a  S . 

H 

Consider  an  example.  Suppose a sonic boom t raverses  a layer 
of turbulent  tropopause  with a typical  thickness of 1 o r  2 km, and  with 
a typical  altitude of 10 km. When the downgoing  boom leaves  the  under- 
side of the  tropopause, its wavefront  irregularity of scale  length S - lOOm 
in  those of its important  partial  waves  with  wavelength h - 1 m will  be 
largely  smoothed  away  in a pathlength z - S 2 / h  - 10 km. 
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APPENDIX A5 
BROWNIAN MOTION 

A pollen  grain  or  other  colloidal  particle  immersed  in a liquid 
or  gas  moves  randomly. Its motion,  called  Brownian  motion,  may  be 
seen  through a microscope when the  particle is suitably  illuminated. 
This  obscure  phenomena, folloiving A .  Einstein34,  became a corner- 
stone of the  molecular  theory of mat ter ,  and played a role  in  the  early 
development of quantum  theory35..  Brownian  motion  has  become a t r a -  
ditional  proving  ground  for  viewpoints  on  random  processes,  as  shown 
for  example by the  articles  collected by N. Wax36. In the  present 
section, we treat  Brownian  motion  as an illustration of the  ideas of 
the  main  text. 

Let q and p =-mqit be  the  Cartesian  coordinates of the  posi- 
tion  and  momentum  mq, of the  colloidal  grain,  where m is the  mass  
of the  grain,  where i = 1,2,3 and where a subscript t denotes  differ- 
entiation  relative  to  time. We write 

as  the  Hamiltonian  form of the  equations of motion  for  the  particle.  The 
new quantity Y expresses  the  frictional  drag of the  ambient  fluid  on  the 
particle.  Stokes  law  for  the  slow fall of a sphere  through a fluid  says y 
i s  independent of time  provided  m is IO8 t imes  the  mass of a fluid 
molecule.  The  function f f( t)  is the  rate of t ransfer  of momentum  to 
the ith component of momentum of the  grain,  as a result  of the  collisions 
of ambient  molecules  with  the  grain.  The  first of equations ( 1 )  is   com- 
monly  termed  Langevin's  equation, a title  which we prefer  to  use  for 
the  state  propagation  for  any  Markov  process. 

The  function f !(t) is commonly  viewed as  random,  with  zero 
mean,  with a correlation  time t not  greatly  in  excess .of the  mean  time 
between  collisions of molecules  with  the  grain,  and  with  statistics  inde- 
pendent of the  values of p i  and q ,  . Under  this  viewpoint,  which  we  will 
use,  the  six  pr(t) and q r  (t) comprise a complete  set of state  functions 
F *(t) for a Markov  process  with  propagation  equations (1). We remark  , 
however,  that  this  viewpoint  has a difficulty,  since  the  statistics of these 
F i(t) , by  a simple  physical  intuition,  depend  at  least  slightly on recent 
past  history of the  pf(t) ,   the  moreso  the  greater  the  ratio of qit  to  the 
mean  molecular  velocity. We surmise  that  the  way  through  this  difficulty 
is to  take as  state  functions  the  full  aggregate of coordinates and  momenta 
of the  colloidal  grain and of the  ambient  molecules  also.  The  statistics 
of this  enlarged  set of state  functions  appears  to  be  strictly  Markovian 
and  with  propagation  equations  more  involved  than ( 1). We have  not  yet 
found an  analysis of this  more  accurate  type of model,  however. 
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W e  write 

where f i ( t )  is by  definition a function  whose  root  mean  square is about 
one,  and  where E is a small constant.  Although  the  six  state  functions 
p l i  q,  with i = 1,2,3 and  with  the  Langevin  equations (1) do not  com- 
prlse a strict  Markov  process  without  violence  to  the  laws of molecular 
motion;  we  will  show  that  these  pi , q ,  do comprise  an  almost  Markov 
process.  The  situation is thus  very  analogous  to  that of Section 8. With 
the  six  state  functions  p, , q as a Markov  process,  the FP equation 
(A6-15)  is easily written as 

Y 

The  various  Planck  coefficients  in  equation ( 3 ) ,  by  equations  (A6-15) a r e  

Einstein34, in his  treatment of Brownian  motion,  introduces 
a time  interval T which  he  states  "is  to  be  very  small  compared  with 
the  observed  interval of time,  but,  nevertheless of such  magnitude  that 
the  movements  executed by  a  particle  in two consecutive  intervals of 
t ime 7 are  to  be  considered  as  mutually  independent  phenomena. I '  This 
statement  was  with  some  justice found objectionable  by  various  authors 37, 
who then  produced a theory of Brownian  motion  without  use of this  state- 
ment.  The  particular T introduced  in Appendix A6 is the same as Einstein 's  
T if within  the  above  quotation we replace  the  phrase  "movements  exec- 
uted  by a particle" by  the  phrase  "small  changes  in  the  six  state  variables 

of observation  measured  from  an  origin of time  at  which  the  six  coordi- 
nates   are  known o r  at least  have known probability  densities.  The  above 
slight  change  in  Einstein's  statement  makes it unobjectionable, we believe. 
This  change,  which  reflects  relatively  recent  random  process  theory, 
makes  his  statement a basis  for  the  viewpoint of the  present  study. 

P i  9 qi  almost  always  for  to >> T .  " The  time to here  denotes  the  epoch 
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A substitution  in  equation (5. 1) f rom (4) yields  with ( f  1) = 0 ,  

o r  with pio as the  initial  value of ( p r ( t ) )  

( ~ i ( t )  ) = ( p i o )   e x p  ( - y t )  (7 )  

Also from  equations (5.1)  and (4), we have 

Similar  substitution  in  equation (5) f rom (4) yield 

W e  now attend  to  the cross moments  between  the  random  state 
functions p i ,   q i  and the  random  forces f which  appear  in  equations 
(10). W e  have 
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The  final  term of equation  (12)  may  be  ignored  since it is proportional 
to ( t ,  / T  ) << 1,  where t ,  is the  mean  molecular  collision  time.  Since 
( f and (f p J )   a r e   z e r o  at t = 0, they  are  thus  by (12) ignorable  at 
all t imes.  We write 

as the  definition of the  integral  covariance cp of f l .  Then  equation 
(10.1)  becomes 

whose  solution is 

where we  now assume  p. = 0.  Substituting  in  equation  (10.2)  from (15) 
yields,  with p  p and q = q ,  10 - 

whose  solution i s  

where  the  constant of integration is chosen  corresponding  to q = 0 at  
t = 0. 

Substituting  in  equation  (10. 3) from  (17)  yields a simple  equation 
whose  time  integral is 

( q 2 )  = cpt/(y2m2) - [ I  - 2e-Yt  v/(y3m3) (18) 

At t imes of usual  experimental  interest,  the first t e rm on the  right of 
equation ( 18) dominates.  Equation ( 18) exhibits  the  diffusion  constant 
D = cp/2y2m2  whose  measurement  gives  information on the  microscopic 
nature of molecular  motion. 
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APPENDIX A6 

THE  FOKKER-PLANCK EQUATION 

The  present  section is a brief  introduction  to  random  process 
theory,  insofar as it is needed  in  our  sonic  problem.  The  section  be- 
gins  with  definitions  and  ends  with  the  Fokker-Planck  equation  More 
sophisticated  introductions  are by P. Mand138 and I. Gikhman f7 . 

A random  variable f is defined as a quantity,  such as the  posi- 
tion of a given  particle at a given  time,  which  plays  an  identifiable  role 
in  some  possibly  observable  process; and whose  value  may  be  any of 
many  values  Those  aggregate is called  the  ensemble  Ef  for f .  The 
quantity  h(t, s) of the  previous  section is a single  random  variable  for 
each  single set of four real numbers  which  specify  values of t and 2. 
The  rules of choice  for  an  ensemble Ef, which a r e  not  expected  to  be- 
come  ever  fully  codified,  touch on the  growing  front of applied  probabil- 
ity,  and  are  discussed  by I. J .  Good39. A random  variable is connected 
with  output  numbers  through  various  ensemble  averages. We remark  
that a random  variable is not a function  in  any  simple  sense. 

A random  function F(t) is defined as a function  whose  depend- 
ence  on its independent  variable t is given  only  by  the  requirement  that 
this  dependence is the  same as that of some  single  function  in a set  of 
functions 

sailed in  the  aggregate  the  ensemble EF for F. A random  process 
F(t) is  defined as a set of functions F,(t) 

whose  time  dependence is given  only  by  the  membership of F(t) in some 
set  

"3 
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whose  members  haze  equal  statistical,  weight, and which  comprise  the 
ensemble E? for F. A single  set iF(t) is called a sample  history of 
the  random  process. A state of the  random  process at t ime to is in 
general a set  of numbers 

provided  simply  that  the  ensemble (3)  propagates  in  time  in a manner 
determined  at  least  in  principle. In our  sonic probAem in  particular,  
there  is a propagation  equation  for  each  member iF(t) of this  ensemble. 
The  Hamiltonian  variables  for a mechanical  system  comprise  an  example 
of state  functions  which  determine a continuous  sequence of statistical 
s ta tes  of the  system. 

We define  the  master  density W ( t , F )  for  any  random  process 
4 

F a s  a function  whose  running  variables  are  the t ipe   l ike   var iab le  t 
and all  the  state  functiop Fi(t) which cozpr i se  F; and suca  that W ( t ,  5)  
is the  probability  that F l ie   in  a range  dF  at   t ime  t .  By d F  we denote 
dF ldF2  . . . . . The  full  solution of a random  process  centers  on  finding 
W ( t ,  F) explicitly  from  conditions  which  determine  it  only  implicitly. 
Frequently,  however,  an  easier  task  is  adequate,  namely  finding  vari- 
ous  moment of W such  as 

an  integral  taken  over  all F space. The transition  function 
4 

for a random  process F, i s  defined  by  tbe remark  that ,  RdF,  is the  prob- 
ability  at  time- t , that F lie  in  range  dF,  containing F , , under  the 
proviso  that F had  value Fo at  t ime to. The  relation 

4 

is evident,  at  least on  second  thought, from  the  definitions of W and 0.  
Equation (7)  is  called  by  various  authors  the  Smoluchowski  or  the 
Chapman-Kolmogorov  equation. We have 

since no matter what the  state of the  system  at  time t, i t   must be  in  at 
lsast   some  state  at   t ime t + T. Thus  an  integration of equation (7) over 
F space  yields  simply 1 = 1.  Equation (7) expresses  the  mass  conser- 
vation of a conceptual  fluid  moving  in  Euclidean  space  with one dimension 
for  each F is a fluid  with mass  density W and total   mass 1. If initial 
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conditions  require 

where 6 denotes  the  many  dimensional  delta  function,  then 

W(t,F) = n(tn,Fo; t, I?) , all t > to 
A 

We do not  mention  here  the  many  recognized  genera of r p d o m  
proce-sses.  But special   interest   at taches  to  the  case  where 61(t,F';t 
+ T , F) is independent of the tLme,epoch t ,  so that  the  transition  proba- 
bility  may  be  denoted  by R ( t ,  F',  F). Then  equation (7) becomes 

which expresses  that  the  dependesce of W ( t , F )  on F at  any  time  is 
determined by its dependence on F at  any  earlier  t ime. In this  case,  
F ( t )  is called a Markov  process  in  standard  usage. In  a Markov  process, 
the  master  density  itself  develops  fully  deterministically. 

-3 + 

The  integral  equation  (1 1 )  becomes  more  tractable  in  applica- 
tions  after a translation  to  an  equivalent  differential  equation,  which is 
performed  most  easily  as  follows4C.  Consider  the  integral I, where 

I = W,(t,z) Q(2) d? , 

W,(t,l?) E CW(t + T,?) - W(t,?)]/T 

where  Q(F) is any  continuous  random  function  which  vanishes  at F i  = t-o, 
for  each F . A substitution  in  equation ( 1  2) from  the  Taylor  series 

and from  equation ( 11) yields 
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By equation ( 8 ) ,  the  f irst  and l a s t   t e rms  of equation (14) cancel.  Inte- 
gration by parts  then  yields 

where 

(16.1) 

{F,FJ 3 E J(F: - F,)(F; - F,) R ( ~ , ? , j ? ' )  dF'/T  (16.2) 

where  the  integrals  are  over all F space.  Equation  (12) is called  the 
Fokker-Planck (FP) equation  for  the  Markov  process F and  the  con- 
ditional  averages  (16)  are  its  Planck  coefficients.  Equation  (15) is the 
general FP equation,  in  distinction  to its special  cases  in  current  use 
for  example by plasma  physicists. 

+ 

Important  intuitions  about  the FP equation  (1 5) may  be  built 
on  simple  examples of which we  now give  one.  &nother is   in Appendix 
A2. Suppose  the  ensemble ( 3 )  for  the  process F consists of a single 
member,  say  G(t).  Then  the  transition  function  becomes 

In the limit of small T, equation  (16)  becomes 

A substitution  in  the FP equation  from  (18)  yields 

The  solution of equation ( 19)  gives 

a s  is easily  seen by  back  substitution  in  equation ( 19) from (20) .  In 
retrospect,  in  problems  in  which  the  ensemble  reduces  to a single  mem- 
ber , o r  in  which  randomness  plays no role,  the FP equation  becomes 
trivial .  
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APPENDIX  A7 
CLOSURE OF MOMENTS 

The  above  master  density W ( t , F )  for a physical  process is 
itself  sometimes  partly  measured. An examale 2 9  is a laser   beam  af ter  
a long  path  in  weak  turbulence,  for  which W ( F )  has  been found to  be 
almost  multivariate  log-normal  in  the F l's. More  frequently, onJy a 
few  moments of W are   measured.  The  general  moment of W ( t , F )  is  
defined  by 

4 

where  a, b, . . . c are  integral  exponents. In expression ( l ) ,  and a s  
usual  when  the  limits of integration  are not explicitly  written,  it  will  be 
understood  that  the  range  for  each  variable of integration is from - m to 
+a. Expression  (1) is commonly  called a moment of order  a + b + . . . c; 
but  we will  call it of degree a + b + . . . c since we  will  need  the  word 
"order"  for  another of its common  purposes.  The  moment  (1) is al ter-  
nately  denoted by 

In  our  s9nic  problem,  as  in  most  applied  work, we may  t reat  knowledge 
of W t', F) a s  equivalent  to  knowledge of all  its  moments.  This is actually 
true  41  under  involved but  weak restrictions on the  type of process.  

We will  throughout  assume  that W ( t , F )  approaches 0 a s  any 
4 

F I appro3che.s k m. We multiply  equations  (A6-15) by F, and integrate 
over all F space  transforming  each  term on the  right of (A6-15) through 
integration by par ts .  The formal  result  is 

Similarly,  multiplying  equation (A6- 15) by F.F. and  integrating  yields 
1 J  

(FiFS > t  = (F ,  CFj I + FJ CFlI + CFIFJI ) ( 3 . 2 )  

And similarly 

and so  on.  The  heirarchy of moment  equations (3)  is in  general  equiv- 
alent  to  the FP equation. We here  specialize  on  Markov  processes 
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='&)/at = J,(t, Fl(t)) (4 1 
whose  sample  hkstories  satisfy  deterministic  propagation  equations of 
form  where J l(F) is some  function of all the  state  functions F ,. In 
processes of physical  interest,  barring  the  simplest,  the  form of J ,  
is such  that  the  right  member of each  equation ( 3 .  n) , the  nth  in  the 
sequence ( 3 ) ,  contains a moment of integral  degree  greater  than  n. 
The  heirarchy (3 )  is then  solvable only by  an  approximation of some 
kind,  which  usually  ignores  all but the first few  of  equations (3 ) .  Find- 
ing  and  justifying  such  an  approximation is the  problem of the  closure 
of moments. Many consider it the  chief  problem  today  in  the  analysis of 
well  posed  physical  random  processes. 

We  now formulate  the  above  closure  problem  in  more  detail. 
The  difference F,' - F,  in  equations  (A6-16)  is  strictly 

where t is the  time  at  which  each of the  left  sides  of  equations  (A6-16) is 
evaluated. A substitution  in  equation(A6-16. 1) f rom (5) and (4) yields 

where o( T) denotes,  as  usual, a quantity  of  order T, that is a quantity 
which  satisfies 

l im 
r - L O  
- O( = finite  quantity,  possibly 0 

T 

Substituting  similarly  in  equation  (Ab-16.2)  yields 

I 

s 2 ( ~ , j ? , ~ ' )  d? ' . .  .\, ( 6 . 2 )  

where  the  limits of integration  for  each of t '  and t" a re   f rom t to t + T .  

If  the J are  non-linear  in  the F , then  obviously  the  moment  equations 
(3 )  may  be not strictly  closed. We remark  that  even when  the J , a r e  
linear  in  the F , then  equations (3 )  may be  not strictly  closed,  which 
we  soon  show,  but  which  may  be l e s s  obvious. 

Divide  the  interval t to t t T by cuts,  namely 

t , = t t a  , t 2 = t + 2 A ,  ... , t , - , = t + ( a -  1 ) A  (8) 

where A = ./a.  Then  equation (6.1)  may be  put,  as a approaches 
infinity , 
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For any  function act', t", . . . F) , let  
+ 

denote  the  ensemble  average of  Q contingent  on  the  possession  by F at 
time t of the same values it has on the  left of FP equation (A6-15). T h i s  
defines  the new brackets (. . ), . Then  equation  (6.1)  clearly  becomes 

4 

{F,] = (tJt  + T) (Ji(t',?(t'))),  dt'/T + O( 7) (11.1) 

and  equation (6 .  2) becomes similarly 

fF,F,] = (tilt t 7 )  (Ji(t',T(t'))J, (t",?(t")) ), dt '  dt"/T  (11.2) 

Useful  methods  for  the  closure of moments  have  in  the  past 
been  specific  to  the  type of process of interest ,  and  we surmise  will 
continue  to  be so.  Hence  we  replace  equation (4) by its special  case 

aF , ( t ) /a t  = c K(i - j ;  t) F,(t) (12) 
J 

in  which  the J a re   l inear  and  homogeneous  in  the F ,.. The  coefficients 
K ,  of  Toeplitz43  form,  like  the F ,  comprise a one-dimensional  discrete 
a r r a y  of functions of t. Equation ( 12) is general  enough  to  include  equa- 
tion (4- 17) provided  that  the K are   regarded as determined  only by 
membership  in  thq  ensemble  for  the  random  medium. g(0) is a sample 
initialsondition, F(t) a sample  history  for  the state functions or  waves,  
while KLt) is a se_t of the  function  K(i  j, t) , o r  a sample  medium. 
Fixing  F(0) and K ( t )  determines  the F(t), o r  a sample  scattering  prob- 
l em is deterministic  through  the  solution o+f equatioq  (12). W e  will ~ 

assume  the  inverse,  or  that  the  fixing of F(0)  and F(t) determines  K(t). 
We have  not  fully  studied  the  validity of the  inverse  but  surmise it to  be 
true  except  for  weak  restrictions.  This  inverse  amounts  to  writing 

where , is a function of all the Fi ls ,  o r  a function of t whose  depend- 
ence on t is entirely  through  the  functional  form of the F,(t) 's  within 
the  interval  from 0 to t. Substituting  in  equations ( 1  1) f rom  (1 2) yields 
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(14.1) 

The  integrals  in  the  right  numbers of equations  (14)  cannot  be  carried 
out  in  simple  fashion  because by (13)  the K ' s  are  functions of the F's 
of a form  as  yet  unknown.  But only  the  ensemble  averages of such 
integrations  are  needed, as shown  by  equation ( 3 ) ,  and these  averages 
are   easier   to   evaluate   as  shown in a later  section. 

We now pause  from  the  main  theme  to  explain  the  emphasis of 
the  present  section  on  the  small  interval T. Many authors  start  with 
their  Fokker-Planck  equation  as  the  limit of equation (A& 15)as T ap- 
proaches 0. Such a procedure, i f  followed consistently,  requires  an 
evaluation of the  limiting  forms of expressions  (14) by intuition,  which 
is not possible  in  our  sonic  problem  with  adequate  accuracy we believe. 

Our  analysis  through  expressions  (14)  has  been  quite  rigorous. 
It is the  approximation  in  the  evaluation of these  expressions  which 
determines  the  suitability of any  mathematical  model of a randoT3pro- 
cess  or  the  hysical   process  i tself ,   as  implied by I. Oppenheim . 
N. Wiener4xintroduces  for  the  physical  Brownian  motion, and with 
great  intuition, a mathematical  model  whose  analysis  he  then  completes 
rigorously  without  reference  to  expressions  corresponding  to  (14). But 
the  analysis of the  slight  gap  between  the  physics of Brownian  motion 
and his  model  requires  expressions  like  (14).  His  model  in  effect  ignores 
changes  in  statistics  over  times  as  short  as a correlation  time, which 
in  Brownian  motion is about  equal  to  the  mean  free  collision  time of the 
ambient  molecules. Our  model  also will ignore  changes  in  statistics 
over a correlation  time,  which  in  our  problem  is  the  time t during 
which  the  N-wave  moves  over a suitably  typical  turbulent  eddy  diameter. 
Wiener's  analysis is based on random  functions  which  are  everywhere 
nondifferentiable  over a large  interval.  The  present  study  deals  only 
with  continuous  and  differentiable  functions,  barring  isolated  points. 
We surmise,  nevertheless,  that  all  essentials of the  present  study could 
be  based  on  compactly  nondifferentiable  functions, a task  not  yet  com- 
pleted.  Such  functions  should  provide a suitable  model  for  waves  in  any 
weakly  r.andom  medium  whose  fluctuations  have a scale  length  small 
compared to  wave  pathlength,  provided  the  statistics of the  medium 
change  slowly  compared  to  the  rate of change  in  the  statistics of the 
waves . 
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